
Drawing Trees Niely with T

E

X

�

Anne Br�uggemann-Klein

y

Derik Wood

z

September 18, 2002

Abstrat

Various algorithms have been proposed for the diÆult problem of

produing aesthetially pleasing drawings of trees, see [?, ?℄ but im-

plementations only exist as \speial purpose software", designed for

speial environments. Therefore, many users resort to the drawing fa-

ilities available on most personal omputers, but the �gures obtained

in this way still look \hand-drawn"; their quality is inferior to the

quality of the surrounding text that an be realized by today's high

quality text proessing systems.

In this paper we present an entirely new solution that integrates

a tree drawing algorithm into one of the best text proessing systems

available. More preisely, we present a T

E

X maro pakage TreeT

E

X

that produes a drawing of a tree from a purely logial desription.

Our approah has three advantages. First, labels for nodes an be han-

dled in a reasonable way. On the one hand, the tree drawing algorithm

an ompute the widths of the labels and take them into aount for

the positioning of the nodes; on the other hand, all the textual parts

of the doument an be treated uniformly. Seond, TreeT

E

X an be

trivially ported to any site running T

E

X. Finally, modularity in the

�

This work was supported by a Natural Sienes and Engineering Researh Counil of

Canada Grant A-5692 and a Deutshe Forshungsgemeinshaft Grant Sto167/1-1. It was

started during the �rst author's stay with the Data Struturing Group in Waterloo.

y

Institut f�ur Informatik, Universit�at Freiburg, Rheinstr. 10{12, 7800 Freiburg,

West Germany

z

Data Struturing Group, Department of Computer Siene, University of Waterloo,

Waterloo, Ontario, N2L 3G1, Canada

1

desription of a tree and T

E

X's maro apabilities allow for libraries

of subtrees and tree lasses.

In addition, we have implemented an option that produes draw-

ings whih make the struture of the trees more obvious to the human

eye, even though they may not be as aesthetially pleasing.

1 Aesthetial riteria for drawing trees

One of the most ommonly used data strutures in omputer siene is the

tree. As many people are using trees in their researh or just as illustration

tools, they are usually struggling with the problem of drawing trees. We are

onerned primarily with ordered trees in the sense of [?℄, espeially binary

and unary-binary trees. A binary tree is a �nite set of nodes whih either is

empty, or onsists of a root and two disjoint binary trees alled the left and

right subtrees of the root. A unary-binary tree is a �nite set of nodes whih

either is empty, or onsists of a root and two disjoint unary-binary trees, or

onsists of a root and one nonempty unary-binary tree. An extended binary

tree is a binary tree in whih eah node has either two nonempty subtrees or

two empty subtrees.

For these trees there are some basi agreements on how they should be

drawn, reeting the top-down and left-right ordering of nodes in a tree; see

[?℄ and [?℄.

1. Trees impose a distane on the nodes; no node should be loser to the

root than any of its anestors.

2. Nodes of a tree at the same height should lie on a straight line, and the

straight lines de�ning the levels should be parallel.

3. The relative order of nodes on any level should be the same as in the

level order traversal of the tree.

These axioms guarantee that trees are drawn as planar graphs: edges do

not interset exept at nodes. Two further axioms improve the aesthetial

appearane of trees:

4. In a unary-binary tree, eah left hild should be positioned to the left

of its parent, eah right hild to the right of its parent, and eah unary

hild should be positioned below its parent.

2

5. A parent should be entered over its hildren.

An additional axiom deals with the problem of tree drawings beoming

too wide and therefore exeeding the physial limit of the output medium:

6. Tree drawings should oupy as little width as possible without violat-

ing the other axioms.

In [?℄, Wetherell and Shannon introdue two algorithms for tree draw-

ings, the �rst of whih ful�lls axioms 1{5, and the seond 1{6. However,

as Reingold and Tilford in [?℄ point out, there is a lak of symmetry in the

algorithms of Wetherell and Shannon whih may lead to unpleasant results.

Therefore, Reingold and Tilford introdue a new strutured axiom:

7. A subtree of a given tree should be drawn the same way regardless of

where it ours in the given tree.

Axiom 7 allows the same tree to be drawn di�erently when it ours as

a subtree in di�erent trees. Reingold and Tilford give an algorithm whih

ful�lls axioms 1{5 and 7. Although this algorithm doesn't ful�ll axiom 6,

the aesthetial improvements are well worth the additional spae. Figure ??

illustrates the bene�ts of axiom 7, and Figure ?? shows that the algorithm

of Reingold and Tilford violates axiom 6.

2 The algorithm of Reingold and Tilford

The algorithm of Reingold and Tilford (hereafter alled \the RT algorithm")

takes a modular approah to the positioning of nodes: The relative positions

of the nodes in a subtree are alulated independently from the rest of the

tree. After the relative positions of two subtrees have been alulated, they

an be joined as siblings in a larger tree by plaing them as lose together

as possible and entering the parent node above them. Inidentally, the

modularity priniple is the reason that the algorithm fails to ful�ll axiom 6;

see [?℄. Two sibling subtrees are plaed as lose together as possible, during

a postorder traversal, as follows. At eah node T , imagine that its two

subtrees have been drawn and ut out of paper along their ontours. Then,

starting with the two subtrees superimposed at their roots, move them apart

3

s

s

s�

�A

As

s

s�

�A

As

�

��

�s

s�

�A

As

�

�

�Q

Q

Qs

s�

�

�Q

Q

Qs

s

s�

�A

As

�

��

�s

s�

�A

As

s

s

s�

�A

As

s

s�

�A

As

�

��

�s

s�

�A

As

�

�

�

�H

H

H

Hs

s�

�A

As

s

s�

�A

As

�

��

�s

s�

�A

As

Figure 1: The left tree is drawn by the algorithm of Wetherell and Shannon,

and the tidier right one is drawn by the algorithm of Reingold and Tilford.

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s�

�A

As

�

�A

As

�

�A

As

�

�A

As

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s

s�

�A

As

s�

�A

As

s�

��

�s

�

��

�s

�

��

�s

�

��

�s

Figure 2: The left tree is drawn by the algorithm of Reingold and Tildford,

but the right tree shows that narrower drawings ful�lling all aestheti axioms

are possible.

4

until a minimal agreed upon distane between the trees is obtained at eah

level. This an be done gradually: Initially, their roots are separated by

some agreed upon minimum distane. Then, at the next lower level, they

are pushed apart until the minimum separation is established there. This

proess is ontinued at suessively lower levels until the bottom of the shorter

subtree is reahed. At some levels no movement may be neessary; but at

no level are the two subtrees moved loser together. When the proess is

omplete, the position of the subtrees is �xed relative to their parent, whih

is entered over them. Assured that the subtrees will never be plaed loser

together, the postorder traversal is ontinued.

A nontrivial implementation of this algorithm has been obtained by Rein-

gold and Tilford that runs in time O(N), where N is the number of nodes

of the tree to be drawn. Their ruial idea is to keep trak of the ontour

of the subtrees by speial pointers, alled threads, suh that whenever two

subtrees are joined, only the top part of the trees down to the lowest level of

the smaller tree need to be taken into aount.

The RT algorithm is given in [?℄. The nodes are positioned on a �xed

grid and are onsidered to have zero width. No labelling is provided. The

algorithm only draws binary trees, but is easily extendable to multiway trees.

3 Improving human pereption of trees

It is ommon understanding in book design that aesthetis and readability

don't neessarily oinide, and|as Lamport ([?℄) puts it|books are meant

to be read, not to be hung on walls. Therefore, readability is more important

than aesthetis.

When it omes to tree drawings, readability means that the struture of

a tree must be easily reognizable. This riterion is not always met by the

RT algorithm. As an example, there are trees whose struture is very di�er-

ent, the only ommon thing being the fat that they have the same number

of nodes at eah level. The RT algorithm might assign idential positions to

these nodes making it very hard to pereive the di�erent strutures. Hene,

we have modi�ed the RT algorithm suh that additional white spae is in-

serted between subtrees of signi�ant nodes. Here a binary node is alled

signi�ant if the minimum distane between its two subtrees is taken below

their root level. Setting the amount of additional white spae to zero retains

5

s

s

s

s

s�

�

�

�A

As

s�

�A

As

�

�

�

�A

As

s

A

As

�

�

s

s

s

s

s�

�

�

�

�

�

�

�A

As

s

s

s�

�A

As

�

�A

As

�

�

�!

s

s

�!

s

s

s�

�

�

�S

Ss

s�

�A

As

�

�

�

��

�s

s

A

As

�

�

�!

s

s

s

s

s�

�

�

�

�

�

�

�S

Ss

s

s

s�

�A

As

�

�A

As

�

�

Figure 3: The �rst two trees get the same plaement of their nodes by the

RT algorithm, although the struture of the two trees is very di�erent. The

alternative drawings highlight the struture of the trees by adding additional

white spae between the subtrees of (�!) signi�ant nodes.

the original RT plaement. The e�et of having nonzero additional white

spae between the subtrees of signi�ant nodes is illustrated in Figure ?? .

Another feature we have added to the RT algorithms is the possibility

to draw an unextended binary tree with the same plaement of nodes as its

assoiated extended version. We de�ne the assoiated extended version of a

binary tree to be the binary tree obtained by replaing eah empty subtree

having a nonempty sibling with a subtree onsisting of one node. This feature

also makes the struture of a tree more prominent; see Figure ??.

4 Trees in a doument preparation environ-

ment

Drawings of trees usually don't ome alone, but are inluded in some text

whih is itself typeset by a text proessing system. Therefore, a typial

senario is a pipe of three stages. First omes the tree drawing program whih

alulates the positioning of the nodes of the tree to be drawn and outputs

a desription of the tree drawing in some graphis language; next omes

a graphis system whih transforms this desription into an intermediate

language whih an be interpreted by the output devie; and �nally omes

6

s

s

s

s�

�A

As

�

�

�

�A

As

s�

�A

As

s

s

s

s�

�A

As

�

�A

As

�

�A

As

A

As

s

s

s

s�

�A

As

�

�

�

��

�s

s�

�A

As

s

s

s

s�

�A

As

�

�A

As

�

��

�s

A

As

s

s

s

s�

�A

As

�

�A

As

�

��

�s

s�

�A

As

Figure 4: In the �rst two drawings, the RT algorithm assigns the same

plaement to the nodes of two trees although their struture is very di�erent.

The modi�ed RT algorithms highlights the struture of the trees by optionally

drawing them like their extended ounterpart, whih is given in the seond

row.

7

the text proessing system whih integrates the output of the graphis system

into the text.

This senario loses its linear struture one nodes have to be labelled,

sine the labelling inuenes the positioning of the nodes. Labels usually

our inside, to the left of, to the right of, or beneath nodes (the latter

only for external nodes), and their extensions ertainly should be taken into

aount by the tree drawing algorithm. But the labels have to be typeset

�rst in order to determine their extensions, preferably by the typesetting

program that is used for the regular text, beause this method makes for the

uniformity in the textual parts of the doument and provides the author with

the full power of the text proessing system for omposing the labels. Hene,

a more omplex ommuniation sheme than a simple pipe is required.

Although a system of two proesses running simultaneously might be

the most elegant solution, we wanted a system that is easily portable to a

large range of hardware at our sites inluding personal omputers with single

proess operating systems. Therefore, we thought of using a text proessing

system having programming failities powerful enough to program a tree

drawing algorithm and graphis failities powerful enough to draw a tree.

One text proessing system rendering outstanding typographi quality and

good enough programming failities is T

E

X, developed by Knuth at Stanford

University; see [?℄. The T

E

X system inludes the following programming

failities:

1. datatypes:

integers (256), dimensions

1

(512), boxes (256), tokenlists (256), boolean

variables (unrestrited)

2. elementary statements:

a := onst, a := b (all types);

a := a + b, a := a � b, a := a=b (integers and dimensions);

horizontal and vertial nesting of boxes

3. ontrol onstruts:

if-then-else statements testing relations between integers, dimensions,

boxes, or boolean variables

1

The term dimension is used in T

E

X to desribe physial measurements of typographial

objets, like the length of a word.

8

4. modularization onstruts:

maros with up to 9 parameters (an be viewed as proedures without

the onept of loal variables).

Although the programming failities of T

E

X hardly exeed the abilities

of a Turing mahine, they are suÆient to handle relatively small programs.

How about the graphis failities? Although T

E

X has no built-in graphis

failities, it allows the plaement of haraters in arbitrary positions on the

page. Therefore, omplex pitures an be synthesized from elementary pi-

ture elements treated as haraters. Lamport has inluded suh a piture

drawing environment in his maro pakage L

A

T

E

X, using quarter irles of

di�erent sizes and line segments (with and without arrow heads) of di�erent

slopes as basi elements; see [?℄. These elements are suÆient for drawing

trees.

This survey of T

E

X's apabilities implies that T

E

X may be a suitable text

proessing system to implement a tree drawing algorithm diretly. We are

basing our algorithm on the RT algorithm, beause this algorithm gives the

aesthetially most pleasing results. In the �rst version presented here, we

restrit ourselves to unary-binary trees, although our method is appliable

to arbitrary multiway trees. But in order to take advantage of the text

proessing environment, we expand the algorithm to allow labelled nodes.

In ontrast to previous tree drawing programs, we feel no neessity to

position the nodes of a tree on a �xed grid. While this may be reasonable

for a plotter with a oarse resolution, it is ertainly not neessary for T

E

X, a

system that is apable of handling arbitrary dimensions and produes devie

independent output.

5 A representation method for T

E

Xtrees

The �rst problem to be solved in implementing our tree drawing algorithm

is how to hoose a good internal representation for trees. A straightforward

adaptation of the implementation by Reingold and Tilford requires, for eah

node, at least the following �elds:

1. two pointers to the hildren of the node

9

2. two dimensions for the o�set to the left and the right hild (these may

be di�erent one there are labels of di�erent widths to the left and right

of the nodes)

3. two dimensions for the x- and y-oordinates of the �nal position of the

nodes

4. three or four labels

5. one token to store the geometri shape (irle, square, framed text et.)

of the node.

Beause these data are used very frequently in alulations, they should

be stored in registers (that's what variables are alled in T

E

X), rather than

being reomputed, in order to obtain reasonably fast performane. This

gives a total of 10N registers for a tree with N nodes, whih would exeed

T

E

X's limited supply of registers. Therefore, we present a modi�ed algorithm

hand-tailored to the abilities of T

E

X. We start with the following observa-

tion. Suppose a unary-binary tree is onstruted bottom-up, in a postorder

traversal. This is done by iterating the following three steps in an order

determined by the tree to be onstruted.

1. Create a new subtree onsisting of one external node.

2. Create a new subtree by appending the two subtrees reated last to a

new binary node; see Figure ??.

3. Create a new subtree by appending the subtree reated last as a left,

right, or unary subtree of a new node; see Figure ??.

(A pointer to) eah subtree that has been reated in steps 1{3 is pushed

onto a stak, and steps 2 and 3 remove two trees or one, respetively, from

the stak before the push operation is arried out. Finally, the tree to be

onstruted will be the remaining tree on the stak.

This tree traversal is performed twie in the RT algorithm. During the

�rst pass, at eah exeution of step 2 or step 3, the relative positions of the

subtree(s) and of the new node are omputed. A loser examination of the

RT algorithm reveals that information about the subtree's oordinates is not

needed during this pass; the ontour information alone would be suÆient.

10

�

�

�

�

�

D

D

D

D

D

+

�

�

�

�

�

D

D

D

D

D

=)

s

�

�

�

�

�

D

D

D

D

D

,

,

,l

l

l

�

�

�

�

�

D

D

D

D

D

�

�

�

�

�

D

D

D

D

D

=)

s

�

�

�

�

�

D

D

D

D

D

or

s

�

�

�

�

�

D

D

D

D

D

or

s

J

JJ

�

�

�

�

�

D

D

D

D

D

Figure 5: Constrution steps 2 and 3

Complete information is only needed in the seond traversal, when the tree is

atually drawn. Here a speial feature of T

E

X omes in that allows us to save

registers. Unlike Pasal, T

E

X provides the apability of storing a drawing in

a single box register that an be positioned freely in later drawings. This

means that in our implementation the two passes of the original RT algorithm

an be intertwined into a single pass, storing for eah subtree on the stak

its ontour and its drawing. Although the latter is a omplex objet, it takes

only one of T

E

X's preious registers.

6 The internal representation

Given a tree, the orresponding T

E

Xtree is a box ontaining the \drawing" of

the tree, together with some additional information about the ontour of the

tree. The referene point of a T

E

Xtree-box is always in the root of the tree.

The height, depth, and width of the box of a T

E

Xtree are of no importane

in this ontext.

The additional information about the ontour of the tree is stored in some

registers for numbers and dimensions and is needed in order to put subtrees

together to form a larger tree. lo� is an array of dimensions whih ontains

11

-10pt

10pt

10pt

lo�

s

s

A

As

A

As

�

�A

As

A

As

15pt

5pt

-10pt

ro�

height: 3, type: dot, ltop: 2pt, rtop: 2pt, lmo�: -10pt, rmo�: 20pt,

lbo�: 10pt, rbo�: 10pt.

Figure 6: A T

E

Xtree onsists of the drawing of the tree and the additional

information. The width of the dots is 4pt, the minimal separation between

adjaent nodes is 16pt, making for a distane of 20pt enter to enter. The

length of the small rule labelling one of the nodes is 5pt. The olumn left

(right) of the tree drawing is the array lo� (ro�), desribing the left (right)

ontour of the tree. At eah level, the dimension given is the horizontal o�set

between the border at the urrent and at the next level. The o�set between

the left border of the root node and the leftmost node at level 1 is -10pt, the

o�set between the right border of the root node and the rightmost node at

level 1 is 15pt, et.

for eah level of the tree the horizontal o�set between the left end of the

leftmost node at the urrent level and the left end of the leftmost node at

the next level. lmo� holds the horizontal o�set between the root and the

leftmost node of the whole tree. lbo� holds the horizontal o�set between

the root and the leftmost node at the bottom level of the tree. Finally, ltop

holds the distane between the referene point of the tree and the leftmost

end of the root. The same is true for ro� , rmo� , rbo� , and rtop; just replae

\left" by \right". Finally, height holds the height of the tree, and type holds

the geometri shape of the root of the tree. Figure ?? shows an example

T

E

Xtree, i.e. a tree drawing and the orresponding additional information.

Given two T

E

Xtrees A and B , how an a new T

E

Xtree C be built that

onsists of a new root and has A and B as subtrees? An example is given in

Figure ??.

12

A: -10pt

10pt

10pt

lo� (A)

s

s

A

As

A

As

�

�A

As

A

As

15pt

5pt

-10pt

ro� (A)

B: 10pt

-10pt

-10pt

-10pt

-10pt

lo� (B)

s

A

As

s

s

s

s�

�

�

�A

As

�

�

�

�

10pt

-10pt

-10pt

10pt

-30pt

ro� (B)

C: -20

-10pt

lo� (A)

8

>

<

>

:

10pt

10pt

�! 10pt

lo� (B)

�

-10pt

lo� (C)

s

s

s

A

As

A

As

�

�A

As

A

As

�

��

�s

A

As

s

s

s

s�

�

�

�A

As

�

�

�

�

20pt

10pt

-10pt

-10pt

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

ro� (B)

10pt

-30pt

ro� (C)

A B C

height 3 5 6

type dot dot dot

ltop 2pt 2pt 2pt

rtop 2pt 2pt 2pt

lmo� -10pt -30pt -30pt

rmo� 20pt 10pt 30pt

lbo� 10pt -30pt -10pt

rbo� 10pt -30pt -10pt

level totsep urrsep

0 20pt 0/16pt

1 25pt 11/16

2 40pt 1/16pt

3 40pt 16pt

Figure 7: The T

E

Xtrees A and B are ombined to form the larger T

E

Xtree C .

The small table gives the history of omputation for totsep and urrsep.

13

First we determine whih tree is higher; this is B in the example. Then

we have to ompute the minimal distane between the roots of A and B , suh

that at all levels of the trees there is free spae of at least minsep between the

trees when they are drawn side by side. For this purpose we keep trak of two

values, totsep and urrsep. The variables totsep and urrsep hold the total

distane between the roots and the distane between the rightmost node of A

and the leftmost node of B at the urrent level. In order to alulate totsep

and urrsep, we start at level 0 and visit eah level of the trees until we reah

the bottom level of the smaller tree; this is A in our example.

At level 0, the distane between the roots of A and B should be at

least minsep. Therefore, we set totsep := minsep + rtop(A) + ltop(B) and

urrsep := minsep. Using ro� (A) and lo� (B), we an proeed to alulate

urrsep for the next level. If urrsep < minsep, we have to inrease totsep by

the di�erene and update urrsep. This proess is iterated until we reah the

lowest level of A. Then totsep holds the �nal distane between the nodes of

A and B , as alulated by the RT algorithm. If the root of C is a signi�ant

node, then the additional spae , whih is 0pt by default, is added to totsep.

However, the approah of synthesizing drawings from simple graphis har-

aters allows only a �nite number of orientations for the tree edges; therefore,

totsep must be inreased slightly to �t the next orientation available.

Now we are ready to onstrut the box of T

E

Xtree C . Simply put A and B

side by side, with the referene points totsep units apart, insert a new node

above them, and onnet the parent and hildren by edges.

Next, we update the additional information for C . This an be done by

using the additional information for A and B . Note that most omponents

of ro� (C) and lro� (C) are the same as in the higher tree, whih is B in

our ase. So, if we an avoid moving this information around, we only have

to aess height(A) + onst many ounters in order to update the additional

information for C . This implies that we an apply the same argument as

in [?℄, whih gives us a running time of O(N) for drawing a tree with N

nodes.

Therefore, we must arefully design the storage alloation for the addi-

tional information of T

E

Xtrees in order to ful�ll the following requirements:

If a new tree is built from two subtrees, the additional information of the

new tree should share storage with its larger subtree. Organizational over-

head, that is, pointers whih keep trak of the loations of di�erent parts of

additional information, must be avoided. This means that all the additional

14

information for one T

E

Xtree should be stored in a row of onseutive dimen-

sion registers suh that only one pointer granting aess to the �rst element

in this row is needed. On the other hand, eah parent tree is higher and

therefore needs more storage than its subtrees. So we must ensure that there

is always enough spae in the row for more information.

The obvious way to ful�ll these requirements is to use a stak and to allow

only the topmost T

E

Xtrees of this stak to be ombined into a larger tree

at any time. This leads to the following register alloation: A subsequent

number of box registers ontains the treeboxes of the subtrees in the stak.

A subsequent number of token registers ontains the type information for

the nodes of the subtrees in the stak. For eah subtree in the stak, a

subsequent number of dimension registers ontains the ontour information

of the subtree. The ordering of these groups of dimension registers reets the

ordering of the subtrees in the stak. Finally, a subsequent number of ounter

registers ontains the height and the address of the �rst dimension register

for eah subtree in the stak. Four address ounters store the addresses of the

last treebox, type information, height, and address of ontour information.

A sketh of the register organization for a stak of T

E

Xtrees is provided in

Figure ??.

When a new node is pushed onto the stak, the treebox, type information,

height, address of ontour information, and ontour information are stored in

the next free registers of the appropriate type, and the four address ounters

are updated aordingly.

When a new tree is formed from the topmost subtrees on the stak, the

treebox, type information, height, and address of ontour information of the

new tree are sorted in the registers formerly used by the bottommost subtree

that has oured in the onstrution step, and the four address registers are

updated aordingly. This means that these informations for the subtrees are

no longer aessible. The ontour information of the new subtree is stored

in the same registers as the ontour information of the larger subtree used in

the onstrution, apart from the left and right o�set of the root to the left

and right hild, whih are stored in the following dimension registers. That

means that gaps an our between the ontour information of subsequent

subtrees in the stak, namely when the right subtree, whih is on a higher

position on the stak, is higher than the left one. In order to avoid these

gaps, the user an speify an option \lefttop when entering a binary node,

whih makes the topmost tree in the stak the left subtree of the node.

15

Dimension registers

lmo� (1) rmo� (1) lbo� (1) rbo� (1) ltop(1) rtop(1)

lo� (h

1

) ro� (h

1

) . . . lo� (1) ro� (1)

. . .

lmo� (n) rmo� (n) lbo� (n) rbo� (n) ltop(n) rtop(n)

lo� (h

n

) ro� (h

n

) . . . lo� (1) ro� (1)

Counter registers

lasttreebox lasttreeheight lasttreeinfo lasttreetype

treeheight(1) diminfo(1) . . . treeheight(n) diminfo(n)

Box registers

treebox (1) . . . treebox (n)

Token registers

type(1) . . . type(n)

Figure 8: lasttreebox , lasttreeheight , lasttreeinfo, lasttreetype ontain pointers

to treebox (n) treeheight(n), lmo� (n), type(n), diminfo(i) ontains a pointer

to lmo� (i). Unused dimension registers are allowed between the dimension

registers of subsequent trees. The ounter registers lasttreebox ,. . . ,diminfo(n)

serve as a diretory mehanism to aess the T

E

Xtrees on the stak.

16

This stak onept also has onsequenes for the design of the user inter-

fae that is disussed in Setion ??.

7 Spae ost analysis

Suppose we want to draw a unary-binary tree T of height h having N nodes

2

.

Aording to our internal representation, for eah subtree in the stak we need

1. one box register to store the box of the T

E

Xtree.

2. one token register to store the type of the root of the subtree.

3. 2h

0

+ 6 dimension registers to store the additional information, where

h

0

is the height of the subtree.

4. three ounter registers to store the register numbers of the box register,

the token register, and the �rst dimension register above.

The following lemma relates to h and N the number of subtrees of T

whih are on the stak simultaneously and their heights.

Lemma 7.1

1. At any time, there are at most h + 1 subtrees of T on the stak.

2. For eah set T of subtrees of T whih are on the stak simultaneously

we have

X

T

0

2T

(ht(T

0

) + 1) � min(N;

(h+ 1)(h+ 2)

2

):

Proof

1. By indution on h.

2

The height h and the number of nodes N refer to the drawing of the tree. N is the

number of irles, squares et. atually drawn, and h is the number of levels in the drawing

minus 1.

17

2. The trees in T are pairwise disjoint, and eah tree of height h

0

has at

least h

0

+ 1 nodes. This implies

X

T

0

2T

(ht(T

0

) + 1) � N:

The seond part is shown by indution on h. The basis h = 0 is lear.

Assume the assumption holds for all trees of height less than h. If T

ontains only subtrees of either the left or the right subtree of T , we

have

X

T

0

2T

(ht(T

0

) + 1) �

h(h+ 1)

2

�

(h+ 1)(h+ 2)

2

:

Otherwise, T ontains the left or the right subtree T

s

of T . Then all

elements of T � fT

s

g belong to the other subtree. This implies

X

T

0

2T

(ht(T

0

) + 1) � ht(T

s

) + 1 +

X

T

0

2T �fT

s

g

(ht(T

0

) + 1)

� h+

h(h+ 1)

2

�

(h+ 1)(h+ 2)

2

: 2

Therefore, our implementation uses at most 9h + 2min(N; (h + 1)(h +

2)=2) registers. In order to ompare this with the 10N registers used in

the straightforward implementation, an estimation of the average height of a

tree with N nodes is needed. Several results, depending on the type of trees

and of the randomization model, are ited in Figure ??, whih ompares

the number of registers used in a straightforward implementation with the

average number of registers used in our implementation. This table shows

learly the advantage of our implementation.

8 The user interfae

8.1 General design onsiderations

The user interfae of TreeT

E

X has been designed in the spirit of the thor-

ough separation of the logial desription of doument omponents and their

layout; see [?, ?℄. This onept ensures both uniformity and exibility of

doument layout and frees authors from layout problems whih have nothing

18

registers average registers

nodes (straight- extended unary-binary binary

forward) binary trees trees searh trees

(

p

�n) [?℄ (

p

3�n) [?℄ (4:311 logn) [?℄

8 80 61.12 94.15 51.04

9 90 65.86 100.89 55.02

10 100 70.44 107.37 58.80

11 110 74.91 113.64 62.41

12 120 79.26 119.71 65.87

20 200 111.34 163.56 90.48

30 300 147.37 211.33 117.31

40 400 180.89 254.75 132.58

50 500 212.80 295.37 143.54

Figure 9: The numbers of registers used by a straightforward implementation

(seond olumn) and by our modi�ed implementation (third to �fth olumn)

of the RT algorithm are given for di�erent types of trees and randomiza-

tion models. The formula in parentheses indiates the average height of the

respetive lass of trees, as depending on the number of nodes.

19

to do with the substane of their work. For some powerful implementations

and projets see [?, ?, ?, ?, ?℄.

In this ontext, the desription of a tree is given in a purely logial form,

and layout variations are de�ned by a separate style ommand whih is valid

for all trees of a doument.

A seond design priniple is to provide defaults for all spei�ations,

thereby allowing the user to omit many de�nitions if the defaults math

what he or she wants.

The node desriptions of a tree must be entered in postorder. This �ts

the internal representation of T

E

Xtrees best. Although this is a natural

method of desribing a tree, a user might prefer more exible desription

methods. However, note that instanes of well de�ned tree lasses an be

desribed easily by T

E

X maros. In setion ??. we give examples of maros

for omplete binary trees and Fibonai trees.

TreeT

E

X uses the piture making maros of L

A

T

E

X. If TreeT

E

X is used

with any other maro pakage or format, the piture maros of L

A

T

E

X are

inluded automatially.

8.2 The desription of a tree

The desription of a tree is started by the ommand \beginTree and losed

by \endTree (or \begin{Tree} and \end{Tree} in L

A

T

E

X). The desription

an be started in any mode; it de�nes a box and two dimensions. The box is

stored in the box register \TeXTree and ontains the drawing of the tree. The

box has zero height and width, and its depth is the height of the drawing. The

referene point is in the enter of the node of the tree. The dimensions are

stored in the registers \leftdist and \rightdist and desribe the distane

between the referene point and the left and right margin of the drawing.

These data an be used to position the drawing of the tree.

Note that the TreeT

E

X maros don't ontribute anything to the urrent

page but only store their results in the registers \TeXTree, \leftdist, and

\rightdist. It is the user's job to put the drawing onto the page, using the

ommands \opy or \box (or \usebox in L

A

T

E

X).

Eah mathing pair of \beginTree and \endTree must ontain the de-

sription for only one tree. Desriptions of trees annot be nested and

new registers annot be alloated inside a mathing pair of \beginTree and

\endTree.

20

As already stated, eah tree desription de�nes the nodes of the tree

in postorder, that is, a tree desription is a partiular sequene of node

desriptions.

A node desription, in turn, onsists of the maro \node, followed by a

list of node options, inluded in braes. The list of node options may be

empty. The node options desribe the labels, the geometri shape (type),

and the outdegree of the node. Default values are provided for all options

whih are not expliitly spei�ed. The following node options are available:

1. \lft{<label>}, \rght{<label>}, \ntr{<label>},

\bnth{<label>}:

These options desribe the labels whih are put to the left of, to the

right of, in the enter of, or beneath the node (the latter only makes

sense for external nodes). The arguments of these maros are proessed

in internal horizontal mode (LR-mode in L

A

T

E

X), but an onsist of

arbitrary nested boxes for more sophistiated labels. For eah of these

options, the default is an empty label.

2. \external, \unary, \leftonly, \rightonly:

These options desribe the outdegree of the node. The default is binary

(no outdegree option is spei�ed).

3. \type{<type>}:

This option desribes the type or geometri shape of the node. <type>

an have the values square, dot, text, or frame. The default value

is irle (no type is spei�ed). A node of type square has a �xed

width, while a node of type frame has its width determined by the

enter label. A node of type text has no frame around its enter label.

The enter label an have arbitrary width.

3. \leftthik, \rightthik: These options hange the thikness of the

left or right outgoing edge of a binary node. Defaults are thin edges

(neither option is spei�ed).

4. \lefttop:

The node option \lefttop in a binary node makes the last entered

subtree the left hild of the node (the right hild is the default). This

option helps to ut down on the number of dimension registers used

21

during the onstrution of a tree. As a rule of thumb, this option is

reommended when the left subtree has a smaller height than the right

subtree, that is, in this ase the right subtree should be entered before

the left one and their parent should be assigned the option \lefttop.

8.3 Maros for lasses of trees

Tree desriptions an be produed by maros. This is espeially useful for

trees whih belong to a larger lass of trees and whih an be spei�ed by

some simple parameters. A small library of suh maros is provided in the

�le TreeClasses.tex.

1. \treesymbol{<node options>}:

This maro produes a triangular tree symbol whih an be inluded

in a tree desription instead of an external node. Labels for these

tree symbols are desribed as for ordinary nodes. In addition, the

options \lvls{<number>} and \slnt{<number>} are provided. \lvls

de�nes the number of levels in the tree over whih the triangle extends,

and \slnt gives the slant of the sides of the triangle, ranging from

1 (minimal) to 24 (maximal). On the other hand, \treesymbol does

not expand to a tree desription, beause a tree symbol annot be built

from subtrees, and, on the other hand, it is not a node, beause it is

allowed to extend over several tree levels and therefore has a longer

ontour than an ordinary node.

2. \binary{<bin speifiation>}:

This maro truly expands to a tree desription. It produes a omplete

binary tree, that is, an extended binary tree, where, for a given h, all

external nodes appear at level h or h � 1, and all external nodes at

level h lie left of those at level h�1. <bin speifiation> onsists of

the following options: \no{<number>} de�nes the number of internal

nodes, with <number> greater than 0, and \squareleaves produes

leaves of type square. Defaults are \no{1} and leaves of type irle.

3. fibonai{<fib speifiation>}:

This maro produes a Fibonai tree. <fib speifiation> allows

for the three options \hght{<number>}, \unarynodes, and \squareleaves.

22

Normally, a Fibonai tree of height h + 2 is a binary tree with Fi-

bonai trees of height h and h + 1 as left and right subtrees. The

option \unarynodes means that the Fibonai tree is augmented by

unary nodes suh that eah two subtree siblings have the same height.

These are examples of what has been alled brother-trees in the liter-

ature; see [?℄. Defaults are \hght{0}, the unaugmented version of a

Fibonai tree, and external nodes of type irle.

8.4 Style options for trees

The TreeT

E

X pakage inludes a style om-

mand \Treestyle{<style option>}, where <style option> ontains all

the parameter settings the user might want to hange. Normally, the om-

mand \Treestyle appears only one at the beginning of the doument and

the style options are valid for all trees of the doument.

The hanges in the style options are global. A \Treestyle ommand

hanges only the spei�ed style options; non-spei�ed options retain the last

spei�ed value or the default value, respetively. The following style options

are available:

1. \treefonts{}:

\treefonts is invoked by \beginTree, and it simply exeutes whatever

is spei�ed in . Defaults are \treefonts{\tenrm} (or

\treefonts{\normalsize\rm} in L

A

T

E

X).

2. \nodesize{<size>}:

\nodesize de�nes the size of the nodes. <size> is a dimension and

spei�es the diameter of irle nodes. The width of square nodes is

adjusted aordingly to be slightly smaller than the diameter of irle

nodes in order to balane their appearane. Furthermore, \nodesize

adjusts the amount of spae by whih the baseline of the labels is

plaed beneath the enter of the node. The default value of \nodesize

suits the default of \treefonts (taking into aount the size option of

L

A

T

E

X's doument style).

3. \vdist{<dimen>}, \minsep{<dimen>}, \addsep{<dimen>}:

vdist spei�es the vertial distane between two subsequent levels of

23

the tree. Default is \vdist{60pt}. \minsep spei�es the minimal hori-

zontal distane between two adjaent nodes. Default is \minsep{20pt}.

\addsep spei�es the additional amount of horizontal spae by whih

two subtree siblings are pushed apart farther than alulated by the

RT algorithm, if the level at whih they are losest is beneath their

root level. Default is \addsep{0pt}

4. \extended, \nonextended:

With the option \extended in e�et, the nodes of a binary tree are

plaed in exatly the same way as they would be in the assoiated

extended version of the tree (the missing nodes are assumed to have no

labels). The default is \nonextended, that is the usual layout.

Some examples of tree desriptions are given in the next �gures. A de-

tailed desription of the TreeT

E

X maros is given in [?℄.

24

4 Knuth

��

��

Carnes 2

��

��

Beeton 1

��

��

�rst

�

�

�

�

� B

B

B

B

B

3 Kellermann

��

��

�

�

�

�

�

�

� Z

Z

Z

Z

Z

Z

Z

5 Lamport

��

��

7 Spivak

��

��

Plass 6

��

��

�

�

�

�

� B

B

B

B

B

8 Tobin

��

��

last

\begin{Tree}

\node{\external\bnth{first}\ntr{1}\lft{Beeton}}

\node{\external\ntr{3}\rght{Kellermann}}

\node{\ntr{2}\lft{Carnes}}

\node{\external\ntr{6}\lft{Plass}}

\node{\external\bnth{last}\ntr{8}\rght{Tobin}}

\node{\ntr{7}\rght{Spivak}}

\node{\leftonly\ntr{5}\rght{Lamport}}

\node{\ntr{4}\rght{Knuth}}

\end{Tree}

\hspae{\leftdist}\usebox{\TeXTree}\hspae{\rightdist}

Figure 10: This is an example of a tree that inludes labels.

25

Knuth

Carnes

Beeton

�rst

�

�

�

�

� T

T

T

T

T

Kellermann

,

,

,

,

,

, l

l

l

l

l

l

Lamport

Spivak

Plass

�

�

�

�

� A

A

A

A

A

Tobin

last

�

�

�

�

�

\begin{Tree}

\node{\external\type{frame}\bnth{first}\ntr{Beeton}}

\node{\external\type{frame}\ntr{Kellermann}}

\node{\type{frame}\ntr{Carnes}}

\node{\external\type{frame}\ntr{Plass}}

\node{\external\type{frame}\bnth{last}\ntr{Tobin}}

\node{\type{frame}\ntr{Spivak}}

\node{\leftonly\type{frame}\ntr{Lamport}}

\node{\type{frame}\ntr{Knuth}}

\end{Tree}

\hspae{\leftdist}\usebox{\TeXTree}\hspae{\rightdist}

Figure 11: This is an example of a tree with framed enter labels.

26

��

��

��

��

��

��

�

�

�

�

� B

B

B

B

B

J

J

J

J

J

��

��

�

�

�

�

� B

B

B

B

B

,

,

,

,

,

, l

l

l

l

l

l

��

��

��

��

�

�

�

�

� B

B

B

B

B

�

�

�

�

� B

B

B

B

B

\begin{Tree}

\binary{\no{6}\squareleaves}

\end{Tree}

\hspae{\leftdist}\usebox{\TeXTree}\hspae{\rightdist}

Figure 12: This is an example of a omplete binary tree.

27

��

��

��

��

��

��

��

��

�

�

�

�

� A

A

A

A

A

��

��

�

�

�

�

� B

B

B

B

B

#

#

#

#

#

��

��

��

��

��

��

�

�

�

�

� B

B

B

B

B

�

�

�

�

� S

S

S

S

S

��

��

��

��

�

�

�

�

� A

A

A

A

A

��

��

�

�

�

�

� B

B

B

B

B

\begin{Tree}

\fibonai{\hght{4}\unarynodes\squareleaves}

\end{Tree}

\hspae{\leftdist}\usebox{\TeXTree}\hspae{\rightdist}

Figure 13: This is an example of a Fibonai tree.

28

Referenes

[1℄ R. J. Beah. Setting Tables and Illustrations with Style. PhD thesis,

University of Waterloo, 1985.

[2℄ A. Br�uggemann-Klein, P. Dolland, and A. Heinz. How to please authors

and publishers: a versatile doument preparation system at Karlsruhe.

In J. D�esarm�enien, editor, T

E

X for Sienti� Doumentation, Stras-

bourg, Frane, June 1986. LNCS 236.

[3℄ A. Br�uggemann-Klein and D. Wood. TreeT

E

X: Doumentation and User

Handbook. Tehnial Report, University of Waterloo, 1987.

[4℄ N.G. de Bruijn, D. Knuth, and S.O. Rie. The average height of planted

plane trees. In R.C. Read, editor, Graph Theory and Computing, 1972.

[5℄ L. Devroye. A note on the height of binary searh trees. Journal of the

ACM, 33(3), July 1986.

[6℄ Ph. Flajolet and A. Odlyzko. The average height of binary trees and

other simple trees. Journal of Computer and System Sienes, 25, 1982.

[7℄ R. Furuta, J. So�eld, and A. Shaw. Doument formatting systems:

surveys, onepts, issues. Computing Surveys, 14(3), 1982.

[8℄ Ch. F. Goldfarb. A generalized approah to doument markup. SIG-

PLAN Noties of the ACM, June 1981.

[9℄ D. E. Knuth. Fundamental Algorithms. Volume 1 of The Art of Com-

puter Programming, Addison-Wesley, Reading, Massahusetts, 1973.

[10℄ D. E. Knuth. The T

E

Xbook. Volume A of Computers & Typesetting,

Addison-Wesley, Reading, Massahusetts, 1986.

[11℄ L. Lamport. L

A

T

E

X, User's Guide & Referene Manual. Addison-Wesley,

Reading, Massahusetts, 1986.

[12℄ Th. Ottmann, H.-W. Six. Eine neue Klasse ausgeglihener Bin�arb�aume.

Angewandte Informatik, 9, 1976.

29

[13℄ V. Quint, I. Vatton, and H. Bedor. Grif: an interative environment

for T

E

X. In J. D�esarm�enien, editor, T

E

X for Sienti� Doumentation,

Strasbourg, Frane, June 1986. LNCS 236.

[14℄ B. K. Reid. Sribe: A Doument Spei�ation Language and its Com-

piler. PhD thesis, Carnegie Mellon University, 1980.

[15℄ E. M. Reingold and J. S. Tilford. Tidier drawings of tree. IEEE Trans-

ations on Software Engineering, 7(2), Marh 1981.

[16℄ K. J. Supowit and E. M. Reingold. The omplexity of drawing trees

niely. Ata Informatia, 18, 1983.

[17℄ Ch. Wetherell and A. Shannon. Tidy drawings of trees. IEEE Transa-

tions on Software Engineering, 5(5), September 1979.

30

