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Abstract

Various algorithms have been proposed for the difficult problem of
producing aesthetically pleasing drawings of trees, see [?, ?] but im-
plementations only exist as “special purpose software”, designed for
special environments. Therefore, many users resort to the drawing fa-
cilities available on most personal computers, but the figures obtained
in this way still look “hand-drawn”; their quality is inferior to the
quality of the surrounding text that can be realized by today’s high
quality text processing systems.

In this paper we present an entirely new solution that integrates
a tree drawing algorithm into one of the best text processing systems
available. More precisely, we present a TEX macro package TreeTEX
that produces a drawing of a tree from a purely logical description.
Our approach has three advantages. First, labels for nodes can be han-
dled in a reasonable way. On the one hand, the tree drawing algorithm
can compute the widths of the labels and take them into account for
the positioning of the nodes; on the other hand, all the textual parts
of the document can be treated uniformly. Second, TreeTEX can be
trivially ported to any site running TEX. Finally, modularity in the
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description of a tree and TEX’s macro capabilities allow for libraries
of subtrees and tree classes.

In addition, we have implemented an option that produces draw-
ings which make the structure of the trees more obvious to the human
eye, even though they may not be as aesthetically pleasing.

1 Aesthetical criteria for drawing trees

One of the most commonly used data structures in computer science is the
tree. As many people are using trees in their research or just as illustration
tools, they are usually struggling with the problem of drawing trees. We are
concerned primarily with ordered trees in the sense of [?], especially binary
and unary-binary trees. A binary tree is a finite set of nodes which either is
empty, or consists of a root and two disjoint binary trees called the left and
right subtrees of the root. A unary-binary tree is a finite set of nodes which
either is empty, or consists of a root and two disjoint unary-binary trees, or
consists of a root and one nonempty unary-binary tree. An extended binary
tree is a binary tree in which each node has either two nonempty subtrees or
two empty subtrees.

For these trees there are some basic agreements on how they should be
drawn, reflecting the top-down and left-right ordering of nodes in a tree; see

(7] and [7].

1. Trees impose a distance on the nodes; no node should be closer to the
root than any of its ancestors.

2. Nodes of a tree at the same height should lie on a straight line, and the
straight lines defining the levels should be parallel.

3. The relative order of nodes on any level should be the same as in the
level order traversal of the tree.

These axioms guarantee that trees are drawn as planar graphs: edges do
not intersect except at nodes. Two further axioms improve the aesthetical
appearance of trees:

4. In a unary-binary tree, each left child should be positioned to the left
of its parent, each right child to the right of its parent, and each unary
child should be positioned below its parent.



5. A parent should be centered over its children.

An additional axiom deals with the problem of tree drawings becoming
too wide and therefore exceeding the physical limit of the output medium:

6. Tree drawings should occupy as little width as possible without violat-
ing the other axioms.

In [?], Wetherell and Shannon introduce two algorithms for tree draw-
ings, the first of which fulfills axioms 1-5, and the second 1-6. However,
as Reingold and Tilford in [?] point out, there is a lack of symmetry in the
algorithms of Wetherell and Shannon which may lead to unpleasant results.
Therefore, Reingold and Tilford introduce a new structured axiom:

7. A subtree of a given tree should be drawn the same way regardless of
where it occurs in the given tree.

Axiom 7 allows the same tree to be drawn differently when it occurs as
a subtree in different trees. Reingold and Tilford give an algorithm which
fulfills axioms 1-5 and 7. Although this algorithm doesn’t fulfill axiom 6,
the aesthetical improvements are well worth the additional space. Figure 7?7
illustrates the benefits of axiom 7, and Figure 7?7 shows that the algorithm
of Reingold and Tilford violates axiom 6.

2 The algorithm of Reingold and Tilford

The algorithm of Reingold and Tilford (hereafter called “the RT algorithm”)
takes a modular approach to the positioning of nodes: The relative positions
of the nodes in a subtree are calculated independently from the rest of the
tree. After the relative positions of two subtrees have been calculated, they
can be joined as siblings in a larger tree by placing them as close together
as possible and centering the parent node above them. Incidentally, the
modularity principle is the reason that the algorithm fails to fulfill axiom 6;
see [?]. Two sibling subtrees are placed as close together as possible, during
a postorder traversal, as follows. At each node T, imagine that its two
subtrees have been drawn and cut out of paper along their contours. Then,
starting with the two subtrees superimposed at their roots, move them apart
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Figure 1: The left tree is drawn by the algorithm of Wetherell and Shannon,
and the tidier right one is drawn by the algorithm of Reingold and Tilford.

Figure 2: The left tree is drawn by the algorithm of Reingold and Tildford,
but the right tree shows that narrower drawings fulfilling all aesthetic axioms
are possible.



until a minimal agreed upon distance between the trees is obtained at each
level. This can be done gradually: Initially, their roots are separated by
some agreed upon minimum distance. Then, at the next lower level, they
are pushed apart until the minimum separation is established there. This
process is continued at successively lower levels until the bottom of the shorter
subtree is reached. At some levels no movement may be necessary; but at
no level are the two subtrees moved closer together. When the process is
complete, the position of the subtrees is fixed relative to their parent, which
is centered over them. Assured that the subtrees will never be placed closer
together, the postorder traversal is continued.

A nontrivial implementation of this algorithm has been obtained by Rein-
gold and Tilford that runs in time O(N), where N is the number of nodes
of the tree to be drawn. Their crucial idea is to keep track of the contour
of the subtrees by special pointers, called threads, such that whenever two
subtrees are joined, only the top part of the trees down to the lowest level of
the smaller tree need to be taken into account.

The RT algorithm is given in [?]. The nodes are positioned on a fixed
grid and are considered to have zero width. No labelling is provided. The
algorithm only draws binary trees, but is easily extendable to multiway trees.

3 Improving human perception of trees

It is common understanding in book design that aesthetics and readability
don’t necessarily coincide, and—as Lamport ([?]) puts it—books are meant
to be read, not to be hung on walls. Therefore, readability is more important
than aesthetics.

When it comes to tree drawings, readability means that the structure of
a tree must be easily recognizable. This criterion is not always met by the
RT algorithm. As an example, there are trees whose structure is very differ-
ent, the only common thing being the fact that they have the same number
of nodes at each level. The RT algorithm might assign identical positions to
these nodes making it very hard to perceive the different structures. Hence,
we have modified the RT algorithm such that additional white space is in-
serted between subtrees of significant nodes. Here a binary node is called
significant if the minimum distance between its two subtrees is taken below
their root level. Setting the amount of additional white space to zero retains



Figure 3: The first two trees get the same placement of their nodes by the
RT algorithm, although the structure of the two trees is very different. The
alternative drawings highlight the structure of the trees by adding additional
white space between the subtrees of (—) significant nodes.

the original RT placement. The effect of having nonzero additional white
space between the subtrees of significant nodes is illustrated in Figure 77 .

Another feature we have added to the RT algorithms is the possibility
to draw an unextended binary tree with the same placement of nodes as its
associated extended version. We define the associated extended version of a
binary tree to be the binary tree obtained by replacing each empty subtree
having a nonempty sibling with a subtree consisting of one node. This feature
also makes the structure of a tree more prominent; see Figure 77.

4 Trees in a document preparation environ-
ment

Drawings of trees usually don’t come alone, but are included in some text
which is itself typeset by a text processing system. Therefore, a typical
scenario is a pipe of three stages. First comes the tree drawing program which
calculates the positioning of the nodes of the tree to be drawn and outputs
a description of the tree drawing in some graphics language; next comes
a graphics system which transforms this description into an intermediate
language which can be interpreted by the output device; and finally comes



Figure 4: In the first two drawings, the RT algorithm assigns the same
placement to the nodes of two trees although their structure is very different.
The modified RT algorithms highlights the structure of the trees by optionally
drawing them like their extended counterpart, which is given in the second
rOw.



the text processing system which integrates the output of the graphics system
into the text.

This scenario loses its linear structure once nodes have to be labelled,
since the labelling influences the positioning of the nodes. Labels usually
occur inside, to the left of, to the right of, or beneath nodes (the latter
only for external nodes), and their extensions certainly should be taken into
account by the tree drawing algorithm. But the labels have to be typeset
first in order to determine their extensions, preferably by the typesetting
program that is used for the regular text, because this method makes for the
uniformity in the textual parts of the document and provides the author with
the full power of the text processing system for composing the labels. Hence,
a more complex communication scheme than a simple pipe is required.

Although a system of two processes running simultaneously might be
the most elegant solution, we wanted a system that is easily portable to a
large range of hardware at our sites including personal computers with single
process operating systems. Therefore, we thought of using a text processing
system having programming facilities powerful enough to program a tree
drawing algorithm and graphics facilities powerful enough to draw a tree.
One text processing system rendering outstanding typographic quality and
good enough programming facilities is TEX, developed by Knuth at Stanford
University; see [?]. The TEX system includes the following programming
facilities:

1. datatypes:
integers (256), dimensions! (512), boxes (256), tokenlists (256), boolean
variables (unrestricted)

2. elementary statements:
a := const, a := b (all types);
a:=a+b,a:=axb,a:=a/b (integers and dimensions);
horizontal and vertical nesting of boxes

3. control constructs:
if-then-else statements testing relations between integers, dimensions,
boxes, or boolean variables

!The term dimension is used in TEX to describe physical measurements of typographical
objects, like the length of a word.



4. modularization constructs:
macros with up to 9 parameters (can be viewed as procedures without
the concept of local variables).

Although the programming facilities of TEX hardly exceed the abilities
of a Turing machine, they are sufficient to handle relatively small programs.
How about the graphics facilities? Although TEX has no built-in graphics
facilities, it allows the placement of characters in arbitrary positions on the
page. Therefore, complex pictures can be synthesized from elementary pic-
ture elements treated as characters. Lamport has included such a picture
drawing environment in his macro package KTEX, using quarter circles of
different sizes and line segments (with and without arrow heads) of different
slopes as basic elements; see [?]. These elements are sufficient for drawing
trees.

This survey of TEX’s capabilities implies that TEX may be a suitable text
processing system to implement a tree drawing algorithm directly. We are
basing our algorithm on the RT algorithm, because this algorithm gives the
aesthetically most pleasing results. In the first version presented here, we
restrict ourselves to unary-binary trees, although our method is applicable
to arbitrary multiway trees. But in order to take advantage of the text
processing environment, we expand the algorithm to allow labelled nodes.

In contrast to previous tree drawing programs, we feel no necessity to
position the nodes of a tree on a fixed grid. While this may be reasonable
for a plotter with a coarse resolution, it is certainly not necessary for TEX, a
system that is capable of handling arbitrary dimensions and produces device
independent output.

5 A representation method for TpXtrees

The first problem to be solved in implementing our tree drawing algorithm
is how to choose a good internal representation for trees. A straightforward
adaptation of the implementation by Reingold and Tilford requires, for each
node, at least the following fields:

1. two pointers to the children of the node



2. two dimensions for the offset to the left and the right child (these may
be different once there are labels of different widths to the left and right
of the nodes)

3. two dimensions for the z- and y-coordinates of the final position of the
nodes

4. three or four labels

5. one token to store the geometric shape (circle, square, framed text etc.)
of the node.

Because these data are used very frequently in calculations, they should
be stored in registers (that’s what variables are called in TEX), rather than
being recomputed, in order to obtain reasonably fast performance. This
gives a total of 10V registers for a tree with N nodes, which would exceed
TEX’s limited supply of registers. Therefore, we present a modified algorithm
hand-tailored to the abilities of TEX. We start with the following observa-
tion. Suppose a unary-binary tree is constructed bottom-up, in a postorder
traversal. This is done by iterating the following three steps in an order
determined by the tree to be constructed.

1. Create a new subtree consisting of one external node.

2. Create a new subtree by appending the two subtrees created last to a
new binary node; see Figure 77.

3. Create a new subtree by appending the subtree created last as a left,
right, or unary subtree of a new node; see Figure 77.

(A pointer to) each subtree that has been created in steps 1-3 is pushed
onto a stack, and steps 2 and 3 remove two trees or one, respectively, from
the stack before the push operation is carried out. Finally, the tree to be
constructed will be the remaining tree on the stack.

This tree traversal is performed twice in the RT algorithm. During the
first pass, at each execution of step 2 or step 3, the relative positions of the
subtree(s) and of the new node are computed. A closer examination of the
RT algorithm reveals that information about the subtree’s coordinates is not
needed during this pass; the contour information alone would be sufficient.
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Figure 5: Construction steps 2 and 3

Complete information is only needed in the second traversal, when the tree is
actually drawn. Here a special feature of TEX comes in that allows us to save
registers. Unlike Pascal, TEX provides the capability of storing a drawing in
a single box register that can be positioned freely in later drawings. This
means that in our implementation the two passes of the original RT algorithm
can be intertwined into a single pass, storing for each subtree on the stack
its contour and its drawing. Although the latter is a complex object, it takes
only one of TEX’s precious registers.

6 The internal representation

Given a tree, the corresponding TEXtree is a box containing the “drawing” of
the tree, together with some additional information about the contour of the
tree. The reference point of a TEXtree-box is always in the root of the tree.
The height, depth, and width of the box of a TEXtree are of no importance
in this context.

The additional information about the contour of the tree is stored in some
registers for numbers and dimensions and is needed in order to put subtrees
together to form a larger tree. loff is an array of dimensions which contains
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-10pt 15pt

10pt opt
10pt -10pt
loff roff

height: 3, type: dot, ltop: 2pt, rtop: 2pt, Imoff: -10pt, rmoff: 20pt,
Iboff: 10pt, rboff: 10pt.

Figure 6: A TgXtree consists of the drawing of the tree and the additional
information. The width of the dots is 4pt, the minimal separation between
adjacent nodes is 16pt, making for a distance of 20pt center to center. The
length of the small rule labelling one of the nodes is 5pt. The column left
(right) of the tree drawing is the array loff (roff ), describing the left (right)
contour of the tree. At each level, the dimension given is the horizontal offset
between the border at the current and at the next level. The offset between
the left border of the root node and the leftmost node at level 1 is -10pt, the
offset between the right border of the root node and the rightmost node at
level 1 is 15pt, etc.

for each level of the tree the horizontal offset between the left end of the
leftmost node at the current level and the left end of the leftmost node at
the next level. [moff holds the horizontal offset between the root and the
leftmost node of the whole tree. Iboff holds the horizontal offset between
the root and the leftmost node at the bottom level of the tree. Finally, ltop
holds the distance between the reference point of the tree and the leftmost
end of the root. The same is true for roff, rmoff, rboff, and rtop; just replace
“left” by “right”. Finally, height holds the height of the tree, and type holds
the geometric shape of the root of the tree. Figure 77 shows an example
TEXtree, i.e. a tree drawing and the corresponding additional information.

Given two TEXtrees A and B, how can a new TgXtree C' be built that
consists of a new root and has A and B as subtrees? An example is given in
Figure 77.
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A: -10pt 15pt B: 10pt 10pt

10pt opt -10pt -10pt
10pt -10pt -10pt -10pt
-10pt 10pt
loff (A) roff (A) -10pt -30pt
loff (B) roff (B)
C: -20 20pt
-10pt 10pt
loff (A){ 10pt -10pt
10pt -10pt
’ U Aot (B)
— 10pt 10pt
-10pt -30pt
o (B){ "
loff (C) roff (C)
A B C
height 3 5) 6
type dot dot dot level | totsep | currsep
ltop 2pt 2pt 2pt 0 20pt | 0/16pt
rtop 2pt 2pt 2pt 1 25pt 11/16
Imoff | -10pt | -30pt | -30pt 2 40pt | 1/16pt
rmoff | 20pt | 10pt | 30pt 3 40pt 16pt
Iboff 10pt | -30pt | -10pt
rboff 10pt | -30pt | -10pt

Figure 7: The TgXtrees A and B are combined to form the larger TEXtree C.
The small table gives the history of computation for totsep and currsep.
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First we determine which tree is higher; this is B in the example. Then
we have to compute the minimal distance between the roots of A and B, such
that at all levels of the trees there is free space of at least minsep between the
trees when they are drawn side by side. For this purpose we keep track of two
values, totsep and currsep. The variables totsep and currsep hold the total
distance between the roots and the distance between the rightmost node of A
and the leftmost node of B at the current level. In order to calculate totsep
and currsep, we start at level 0 and visit each level of the trees until we reach
the bottom level of the smaller tree; this is A in our example.

At level 0, the distance between the roots of A and B should be at
least minsep. Therefore, we set totsep := minsep + rtop(A) + ltop(B) and
currsep == minsep. Using roff (A) and loff (B), we can proceed to calculate
currsep for the next level. If currsep < minsep, we have to increase totsep by
the difference and update currsep. This process is iterated until we reach the
lowest level of A. Then totsep holds the final distance between the nodes of
A and B, as calculated by the RT algorithm. If the root of C' is a significant
node, then the additional space , which is Opt by default, is added to totsep.
However, the approach of synthesizing drawings from simple graphics char-
acters allows only a finite number of orientations for the tree edges; therefore,
totsep must be increased slightly to fit the next orientation available.

Now we are ready to construct the box of TEXtree C'. Simply put A and B
side by side, with the reference points totsep units apart, insert a new node
above them, and connect the parent and children by edges.

Next, we update the additional information for C'. This can be done by
using the additional information for A and B. Note that most components
of roff (C') and lroff (C') are the same as in the higher tree, which is B in
our case. So, if we can avoid moving this information around, we only have
to access height(A) + const many counters in order to update the additional
information for C'. This implies that we can apply the same argument as
in [?], which gives us a running time of O(N) for drawing a tree with N
nodes.

Therefore, we must carefully design the storage allocation for the addi-
tional information of TEXtrees in order to fulfill the following requirements:
If a new tree is built from two subtrees, the additional information of the
new tree should share storage with its larger subtree. Organizational over-
head, that is, pointers which keep track of the locations of different parts of
additional information, must be avoided. This means that all the additional
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information for one TEXtree should be stored in a row of consecutive dimen-
sion registers such that only one pointer granting access to the first element
in this row is needed. On the other hand, each parent tree is higher and
therefore needs more storage than its subtrees. So we must ensure that there
is always enough space in the row for more information.

The obvious way to fulfill these requirements is to use a stack and to allow
only the topmost TEXtrees of this stack to be combined into a larger tree
at any time. This leads to the following register allocation: A subsequent
number of box registers contains the treeboxes of the subtrees in the stack.
A subsequent number of token registers contains the type information for
the nodes of the subtrees in the stack. For each subtree in the stack, a
subsequent number of dimension registers contains the contour information
of the subtree. The ordering of these groups of dimension registers reflects the
ordering of the subtrees in the stack. Finally, a subsequent number of counter
registers contains the height and the address of the first dimension register
for each subtree in the stack. Four address counters store the addresses of the
last treebox, type information, height, and address of contour information.
A sketch of the register organization for a stack of TEXtrees is provided in
Figure 77.

When a new node is pushed onto the stack, the treebox, type information,
height, address of contour information, and contour information are stored in
the next free registers of the appropriate type, and the four address counters
are updated accordingly.

When a new tree is formed from the topmost subtrees on the stack, the
treebox, type information, height, and address of contour information of the
new tree are sorted in the registers formerly used by the bottommost subtree
that has occured in the construction step, and the four address registers are
updated accordingly. This means that these informations for the subtrees are
no longer accessible. The contour information of the new subtree is stored
in the same registers as the contour information of the larger subtree used in
the construction, apart from the left and right offset of the root to the left
and right child, which are stored in the following dimension registers. That
means that gaps can occur between the contour information of subsequent
subtrees in the stack, namely when the right subtree, which is on a higher
position on the stack, is higher than the left one. In order to avoid these
gaps, the user can specify an option \lefttop when entering a binary node,
which makes the topmost tree in the stack the left subtree of the node.
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Dimension registers
Imoff (1) rmoff (1) lboff (1) rboff (1) ltop(1) rtop(1)
loff (h1) roff (hy) ... loff (1) roff (1)

lmoﬁ(n) rmoff (n) lboff (n) rboff (n) ltop(n) rtop(n)
loff (hy) roff (hy) ... loff (1) roff (1)

Counter registers
lasttreebox lasttreeheight lasttreeinfo lasttreetype
treeheight (1) diminfo(1) ... treeheight(n) diminfo(n)

Box registers
treeboz (1) ... treeboz(n)

Token registers
type(1) ... type(n)

Figure 8: lasttreebox, lasttreeheight, lasttreeinfo, lasttreetype contain pointers
to treeboz(n) treeheight(n), Imoff (n), type(n), diminfo(i) contains a pointer
to Imoff (). Unused dimension registers are allowed between the dimension
registers of subsequent trees. The counter registers lasttreeboz,. . . ,diminfo(n)
serve as a directory mechanism to access the TEXtrees on the stack.
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This stack concept also has consequences for the design of the user inter-
face that is discussed in Section 77.

7 Space cost analysis

Suppose we want to draw a unary-binary tree 1" of height h having N nodes?.
According to our internal representation, for each subtree in the stack we need

1. one box register to store the box of the TEXtree.
2. one token register to store the type of the root of the subtree.

3. 2h' + 6 dimension registers to store the additional information, where
h' is the height of the subtree.

4. three counter registers to store the register numbers of the box register,
the token register, and the first dimension register above.

The following lemma relates to h and N the number of subtrees of T’
which are on the stack simultaneously and their heights.

Lemma 7.1
1. At any time, there are at most h + 1 subtrees of T on the stack.

2. For each set T of subtrees of T which are on the stack simultaneously
we have

h+1)(h+2)
2

> (bt(7") + 1) < min(N, (
T'eT

).

Proof

1. By induction on A.

2The height h and the number of nodes N refer to the drawing of the tree. N is the
number of circles, squares etc. actually drawn, and h is the number of levels in the drawing
minus 1.
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2. The trees in T are pairwise disjoint, and each tree of height A’ has at
least A’ 4+ 1 nodes. This implies

> (ht(1") +1) < N.
TeT

The second part is shown by induction on h. The basis h = 0 is clear.
Assume the assumption holds for all trees of height less than h. If T
contains only subtrees of either the left or the right subtree of 1", we

have

h(h+1) < (h,+1)(h+2)'

2 2

> (mt(T) +1) <

TeT
Otherwise, 7 contains the left or the right subtree 7Ty of T. Then all
elements of 7 — {7} belong to the other subtree. This implies

ST +1) < hwt(Ty)+1+ > (ht(T") +1)
T'eT TeT—{Ts}
h(h+1) < (h+1)(h+2).

< h
= + 5 < 5

Therefore, our implementation uses at most 94 + 2min(N, (h + 1)(h +
2)/2) registers. In order to compare this with the 10N registers used in
the straightforward implementation, an estimation of the average height of a
tree with /N nodes is needed. Several results, depending on the type of trees
and of the randomization model, are cited in Figure 77, which compares
the number of registers used in a straightforward implementation with the
average number of registers used in our implementation. This table shows
clearly the advantage of our implementation.

8 The user interface

8.1 General design considerations

The user interface of TreeTEX has been designed in the spirit of the thor-
ough separation of the logical description of document components and their
layout; see [?, ?]. This concept ensures both uniformity and flexibility of
document layout and frees authors from layout problems which have nothing
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registers average registers
nodes | (straight- | extended | unary-binary binary
forward) | binary trees trees search trees
(Van) [7] | (V3rn) [?] | (4.311logn) [?]
8 80 61.12 94.15 51.04
9 90 65.86 100.89 55.02
10 100 70.44 107.37 58.80
11 110 74.91 113.64 62.41
12 120 79.26 119.71 65.87
20 200 111.34 163.56 90.48
30 300 147.37 211.33 117.31
40 400 180.89 254.75 132.58
50 500 212.80 295.37 143.54

Figure 9: The numbers of registers used by a straightforward implementation
(second column) and by our modified implementation (third to fifth column)
of the RT algorithm are given for different types of trees and randomiza-
tion models. The formula in parentheses indicates the average height of the
respective class of trees, as depending on the number of nodes.
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to do with the substance of their work. For some powerful implementations
and projects see [?7, 7,77, 7).

In this context, the description of a tree is given in a purely logical form,
and layout variations are defined by a separate style command which is valid
for all trees of a document.

A second design principle is to provide defaults for all specifications,
thereby allowing the user to omit many definitions if the defaults match
what he or she wants.

The node descriptions of a tree must be entered in postorder. This fits
the internal representation of TgXtrees best. Although this is a natural
method of describing a tree, a user might prefer more flexible description
methods. However, note that instances of well defined tree classes can be
described easily by TEX macros. In section ??7. we give examples of macros
for complete binary trees and Fibonacci trees.

TreeTEX uses the picture making macros of BTEX. If TreeTEX is used
with any other macro package or format, the picture macros of IXTEX are
included automatically.

8.2 The description of a tree

The description of a tree is started by the command \beginTree and closed
by \endTree (or \begin{Tree} and \end{Tree} in KTEX). The description
can be started in any mode; it defines a box and two dimensions. The box is
stored in the box register \TeXTree and contains the drawing of the tree. The
box has zero height and width, and its depth is the height of the drawing. The
reference point is in the center of the node of the tree. The dimensions are
stored in the registers \leftdist and \rightdist and describe the distance
between the reference point and the left and right margin of the drawing.
These data can be used to position the drawing of the tree.

Note that the TreeTEX macros don’t contribute anything to the current
page but only store their results in the registers \TeXTree, \leftdist, and
\rightdist. It is the user’s job to put the drawing onto the page, using the
commands \copy or \box (or \usebox in KTEX).

Each matching pair of \beginTree and \endTree must contain the de-
scription for only one tree. Descriptions of trees cannot be nested and
new registers cannot be allocated inside a matching pair of \beginTree and
\endTree.

20



As already stated, each tree description defines the nodes of the tree
in postorder, that is, a tree description is a particular sequence of node
descriptions.

A node description, in turn, consists of the macro \node, followed by a
list of node options, included in braces. The list of node options may be
empty. The node options describe the labels, the geometric shape (type),
and the outdegree of the node. Default values are provided for all options
which are not explicitly specified. The following node options are available:

1.

\1ft{<label>}, \rght{<label>}, \cntr{<label>},
\bnth{<label>}:

These options describe the labels which are put to the left of, to the
right of, in the center of, or beneath the node (the latter only makes
sense for external nodes). The arguments of these macros are processed
in internal horizontal mode (LR-mode in KTEX), but can consist of
arbitrary nested boxes for more sophisticated labels. For each of these
options, the default is an empty label.

\external, \unary, \leftonly, \rightonly:
These options describe the outdegree of the node. The default is binary
(no outdegree option is specified).

\type{<type>}:

This option describes the type or geometric shape of the node. <type>
can have the values square, dot, text, or frame. The default value
is circle (no type is specified). A node of type square has a fixed
width, while a node of type frame has its width determined by the
center label. A node of type text has no frame around its center label.
The center label can have arbitrary width.

\leftthick, \rightthick: These options change the thickness of the
left or right outgoing edge of a binary node. Defaults are thin edges
(neither option is specified).

\lefttop:

The node option \lefttop in a binary node makes the last entered
subtree the left child of the node (the right child is the default). This
option helps to cut down on the number of dimension registers used

21



during the construction of a tree. As a rule of thumb, this option is
recommended when the left subtree has a smaller height than the right
subtree, that is, in this case the right subtree should be entered before
the left one and their parent should be assigned the option \lefttop.

8.3 Macros for classes of trees

Tree descriptions can be produced by macros. This is especially useful for
trees which belong to a larger class of trees and which can be specified by
some simple parameters. A small library of such macros is provided in the
file TreeClasses.tex.

1. \treesymbol{<node options>}:

This macro produces a triangular tree symbol which can be included
in a tree description instead of an external node. Labels for these
tree symbols are described as for ordinary nodes. In addition, the
options \1lvls{<number>} and \slnt{<number>} are provided. \1lvls
defines the number of levels in the tree over which the triangle extends,
and \slnt gives the slant of the sides of the triangle, ranging from
1 (minimal) to 24 (maximal). On the other hand, \treesymbol does
not expand to a tree description, because a tree symbol cannot be built
from subtrees, and, on the other hand, it is not a node, because it is
allowed to extend over several tree levels and therefore has a longer
contour than an ordinary node.

2. \binary{<bin specification>}:
This macro truly expands to a tree description. It produces a complete
binary tree, that is, an extended binary tree, where, for a given h, all
external nodes appear at level h or h — 1, and all external nodes at
level h lie left of those at level h —1. <bin specification> consists of
the following options: \no{<number>} defines the number of internal
nodes, with <number> greater than 0, and \squareleaves produces
leaves of type square. Defaults are \no{1} and leaves of type circle.

3. fibonacci{<fib specification>}:
This macro produces a Fibonacci tree. <fib specification> allows
for the three options \hght{<number>}, \unarynodes, and \squareleaves.
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Normally, a Fibonacci tree of height h + 2 is a binary tree with Fi-
bonacci trees of height h and h + 1 as left and right subtrees. The
option \unarynodes means that the Fibonacci tree is augmented by
unary nodes such that each two subtree siblings have the same height.
These are examples of what has been called brother-trees in the liter-
ature; see [?]. Defaults are \hght{0}, the unaugmented version of a
Fibonacci tree, and external nodes of type circle.

8.4 Style options for trees

The TreeTEX package includes a style com-
mand \Treestyle{<style option>}, where <style option> contains all
the parameter settings the user might want to change. Normally, the com-
mand \Treestyle appears only once at the beginning of the document and
the style options are valid for all trees of the document.

The changes in the style options are global. A \Treestyle command
changes only the specified style options; non-specified options retain the last
specified value or the default value, respectively. The following style options
are available:

1. \treefonts{<font options>}:
\treefonts is invoked by \beginTree, and it simply executes whatever
is specified in <font options>. Defaults are \treefonts{\tenrm} (or
\treefonts{\normalsize\rm} in KTEX).

2. \nodesize{<size>}:

\nodesize defines the size of the nodes. <size> is a dimension and
specifies the diameter of circle nodes. The width of square nodes is
adjusted accordingly to be slightly smaller than the diameter of circle
nodes in order to balance their appearance. Furthermore, \nodesize
adjusts the amount of space by which the baseline of the labels is
placed beneath the center of the node. The default value of \nodesize
suits the default of \treefonts (taking into account the size option of
ITEX’s document style).

3. \vdist{<dimen>}, \minsep{<dimen>}, \addsep{<dimen>}:
vdist specifies the vertical distance between two subsequent levels of
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the tree. Default is \vdist{60pt}. \minsep specifies the minimal hori-
zontal distance between two adjacent nodes. Default is \minsep{20pt}.
\addsep specifies the additional amount of horizontal space by which
two subtree siblings are pushed apart farther than calculated by the
RT algorithm, if the level at which they are closest is beneath their
root level. Default is \addsep{Opt}

4. \extended, \nonextended:
With the option \extended in effect, the nodes of a binary tree are
placed in exactly the same way as they would be in the associated
extended version of the tree (the missing nodes are assumed to have no
labels). The default is \nonextended, that is the usual layout.

Some examples of tree descriptions are given in the next figures. A de-
tailed description of the TreeTEX macros is given in [?].

24



Carnes e Lamport

Beeton

\begin{Tree}
\node{\external\bnth{first}\cntr{1}\1ft{Beeton}}
\node{\external\cntr{3}\rght{Kellermann}}
\node{\cntr{2}\1ft{Carnes}}
\node{\external\cntr{6}\1ft{Plass}}
\node{\external\bnth{last}\cntr{8}\rght{Tobin}}
\node{\cntr{7}\rght{Spivak}}
\node{\leftonly\cntr{5}\rght{Lamport}}
\node{\cntr{4}\rght{Knuth}}

\end{Tree}

\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 10: This is an example of a tree that includes labels.
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Knuth

Carnes Lamport
Beeton Kellermann Spivak
first / \
Plass Tobin
last

\begin{Tree}
\node{\external\type{frame}\bnth{first}\cntr{Beeton}}
\node{\external\type{frame}\cntr{Kellermann}}
\node{\type{frame}\cntr{Carnes}}
\node{\external\type{frame}\cntr{Plass}}
\node{\external\type{frame}\bnth{last}\cntr{Tobin}}
\node{\type{frame}\cntr{Spivak}}
\node{\leftonly\type{frame}\cntr{Lamport}}
\node{\type{frame}\cntr{Knuth}}

\end{Tree}

\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 11: This is an example of a tree with framed center labels.
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\begin{Tree}
\binary{\no{6}\squareleaves}
\end{Tree}

\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 12: This is an example of a complete binary tree.
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\begin{Tree}
\fibonacci{\hght{4}\unarynodes\squareleaves}
\end{Tree}
\hspace{\leftdist}\usebox{\TeXTree}\hspace{\rightdist}

Figure 13: This is an example of a Fibonacci tree.
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