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Abstra
t

Various algorithms have been proposed for the diÆ
ult problem of

produ
ing aestheti
ally pleasing drawings of trees, see [?, ?℄ but im-

plementations only exist as \spe
ial purpose software", designed for

spe
ial environments. Therefore, many users resort to the drawing fa-


ilities available on most personal 
omputers, but the �gures obtained

in this way still look \hand-drawn"; their quality is inferior to the

quality of the surrounding text that 
an be realized by today's high

quality text pro
essing systems.

In this paper we present an entirely new solution that integrates

a tree drawing algorithm into one of the best text pro
essing systems

available. More pre
isely, we present a T

E

X ma
ro pa
kage TreeT

E

X

that produ
es a drawing of a tree from a purely logi
al des
ription.

Our approa
h has three advantages. First, labels for nodes 
an be han-

dled in a reasonable way. On the one hand, the tree drawing algorithm


an 
ompute the widths of the labels and take them into a

ount for

the positioning of the nodes; on the other hand, all the textual parts

of the do
ument 
an be treated uniformly. Se
ond, TreeT

E

X 
an be

trivially ported to any site running T

E

X. Finally, modularity in the

�
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des
ription of a tree and T

E

X's ma
ro 
apabilities allow for libraries

of subtrees and tree 
lasses.

In addition, we have implemented an option that produ
es draw-

ings whi
h make the stru
ture of the trees more obvious to the human

eye, even though they may not be as aestheti
ally pleasing.

1 Aestheti
al 
riteria for drawing trees

One of the most 
ommonly used data stru
tures in 
omputer s
ien
e is the

tree. As many people are using trees in their resear
h or just as illustration

tools, they are usually struggling with the problem of drawing trees. We are


on
erned primarily with ordered trees in the sense of [?℄, espe
ially binary

and unary-binary trees. A binary tree is a �nite set of nodes whi
h either is

empty, or 
onsists of a root and two disjoint binary trees 
alled the left and

right subtrees of the root. A unary-binary tree is a �nite set of nodes whi
h

either is empty, or 
onsists of a root and two disjoint unary-binary trees, or


onsists of a root and one nonempty unary-binary tree. An extended binary

tree is a binary tree in whi
h ea
h node has either two nonempty subtrees or

two empty subtrees.

For these trees there are some basi
 agreements on how they should be

drawn, re
e
ting the top-down and left-right ordering of nodes in a tree; see

[?℄ and [?℄.

1. Trees impose a distan
e on the nodes; no node should be 
loser to the

root than any of its an
estors.

2. Nodes of a tree at the same height should lie on a straight line, and the

straight lines de�ning the levels should be parallel.

3. The relative order of nodes on any level should be the same as in the

level order traversal of the tree.

These axioms guarantee that trees are drawn as planar graphs: edges do

not interse
t ex
ept at nodes. Two further axioms improve the aestheti
al

appearan
e of trees:

4. In a unary-binary tree, ea
h left 
hild should be positioned to the left

of its parent, ea
h right 
hild to the right of its parent, and ea
h unary


hild should be positioned below its parent.
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5. A parent should be 
entered over its 
hildren.

An additional axiom deals with the problem of tree drawings be
oming

too wide and therefore ex
eeding the physi
al limit of the output medium:

6. Tree drawings should o

upy as little width as possible without violat-

ing the other axioms.

In [?℄, Wetherell and Shannon introdu
e two algorithms for tree draw-

ings, the �rst of whi
h ful�lls axioms 1{5, and the se
ond 1{6. However,

as Reingold and Tilford in [?℄ point out, there is a la
k of symmetry in the

algorithms of Wetherell and Shannon whi
h may lead to unpleasant results.

Therefore, Reingold and Tilford introdu
e a new stru
tured axiom:

7. A subtree of a given tree should be drawn the same way regardless of

where it o

urs in the given tree.

Axiom 7 allows the same tree to be drawn di�erently when it o

urs as

a subtree in di�erent trees. Reingold and Tilford give an algorithm whi
h

ful�lls axioms 1{5 and 7. Although this algorithm doesn't ful�ll axiom 6,

the aestheti
al improvements are well worth the additional spa
e. Figure ??

illustrates the bene�ts of axiom 7, and Figure ?? shows that the algorithm

of Reingold and Tilford violates axiom 6.

2 The algorithm of Reingold and Tilford

The algorithm of Reingold and Tilford (hereafter 
alled \the RT algorithm")

takes a modular approa
h to the positioning of nodes: The relative positions

of the nodes in a subtree are 
al
ulated independently from the rest of the

tree. After the relative positions of two subtrees have been 
al
ulated, they


an be joined as siblings in a larger tree by pla
ing them as 
lose together

as possible and 
entering the parent node above them. In
identally, the

modularity prin
iple is the reason that the algorithm fails to ful�ll axiom 6;

see [?℄. Two sibling subtrees are pla
ed as 
lose together as possible, during

a postorder traversal, as follows. At ea
h node T , imagine that its two

subtrees have been drawn and 
ut out of paper along their 
ontours. Then,

starting with the two subtrees superimposed at their roots, move them apart

3
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Figure 1: The left tree is drawn by the algorithm of Wetherell and Shannon,

and the tidier right one is drawn by the algorithm of Reingold and Tilford.
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Figure 2: The left tree is drawn by the algorithm of Reingold and Tildford,

but the right tree shows that narrower drawings ful�lling all aestheti
 axioms

are possible.
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until a minimal agreed upon distan
e between the trees is obtained at ea
h

level. This 
an be done gradually: Initially, their roots are separated by

some agreed upon minimum distan
e. Then, at the next lower level, they

are pushed apart until the minimum separation is established there. This

pro
ess is 
ontinued at su

essively lower levels until the bottom of the shorter

subtree is rea
hed. At some levels no movement may be ne
essary; but at

no level are the two subtrees moved 
loser together. When the pro
ess is


omplete, the position of the subtrees is �xed relative to their parent, whi
h

is 
entered over them. Assured that the subtrees will never be pla
ed 
loser

together, the postorder traversal is 
ontinued.

A nontrivial implementation of this algorithm has been obtained by Rein-

gold and Tilford that runs in time O(N), where N is the number of nodes

of the tree to be drawn. Their 
ru
ial idea is to keep tra
k of the 
ontour

of the subtrees by spe
ial pointers, 
alled threads, su
h that whenever two

subtrees are joined, only the top part of the trees down to the lowest level of

the smaller tree need to be taken into a

ount.

The RT algorithm is given in [?℄. The nodes are positioned on a �xed

grid and are 
onsidered to have zero width. No labelling is provided. The

algorithm only draws binary trees, but is easily extendable to multiway trees.

3 Improving human per
eption of trees

It is 
ommon understanding in book design that aestheti
s and readability

don't ne
essarily 
oin
ide, and|as Lamport ([?℄) puts it|books are meant

to be read, not to be hung on walls. Therefore, readability is more important

than aestheti
s.

When it 
omes to tree drawings, readability means that the stru
ture of

a tree must be easily re
ognizable. This 
riterion is not always met by the

RT algorithm. As an example, there are trees whose stru
ture is very di�er-

ent, the only 
ommon thing being the fa
t that they have the same number

of nodes at ea
h level. The RT algorithm might assign identi
al positions to

these nodes making it very hard to per
eive the di�erent stru
tures. Hen
e,

we have modi�ed the RT algorithm su
h that additional white spa
e is in-

serted between subtrees of signi�
ant nodes. Here a binary node is 
alled

signi�
ant if the minimum distan
e between its two subtrees is taken below

their root level. Setting the amount of additional white spa
e to zero retains
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Figure 3: The �rst two trees get the same pla
ement of their nodes by the

RT algorithm, although the stru
ture of the two trees is very di�erent. The

alternative drawings highlight the stru
ture of the trees by adding additional

white spa
e between the subtrees of (�!) signi�
ant nodes.

the original RT pla
ement. The e�e
t of having nonzero additional white

spa
e between the subtrees of signi�
ant nodes is illustrated in Figure ?? .

Another feature we have added to the RT algorithms is the possibility

to draw an unextended binary tree with the same pla
ement of nodes as its

asso
iated extended version. We de�ne the asso
iated extended version of a

binary tree to be the binary tree obtained by repla
ing ea
h empty subtree

having a nonempty sibling with a subtree 
onsisting of one node. This feature

also makes the stru
ture of a tree more prominent; see Figure ??.

4 Trees in a do
ument preparation environ-

ment

Drawings of trees usually don't 
ome alone, but are in
luded in some text

whi
h is itself typeset by a text pro
essing system. Therefore, a typi
al

s
enario is a pipe of three stages. First 
omes the tree drawing program whi
h


al
ulates the positioning of the nodes of the tree to be drawn and outputs

a des
ription of the tree drawing in some graphi
s language; next 
omes

a graphi
s system whi
h transforms this des
ription into an intermediate

language whi
h 
an be interpreted by the output devi
e; and �nally 
omes
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Figure 4: In the �rst two drawings, the RT algorithm assigns the same

pla
ement to the nodes of two trees although their stru
ture is very di�erent.

The modi�ed RT algorithms highlights the stru
ture of the trees by optionally

drawing them like their extended 
ounterpart, whi
h is given in the se
ond

row.
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the text pro
essing system whi
h integrates the output of the graphi
s system

into the text.

This s
enario loses its linear stru
ture on
e nodes have to be labelled,

sin
e the labelling in
uen
es the positioning of the nodes. Labels usually

o

ur inside, to the left of, to the right of, or beneath nodes (the latter

only for external nodes), and their extensions 
ertainly should be taken into

a

ount by the tree drawing algorithm. But the labels have to be typeset

�rst in order to determine their extensions, preferably by the typesetting

program that is used for the regular text, be
ause this method makes for the

uniformity in the textual parts of the do
ument and provides the author with

the full power of the text pro
essing system for 
omposing the labels. Hen
e,

a more 
omplex 
ommuni
ation s
heme than a simple pipe is required.

Although a system of two pro
esses running simultaneously might be

the most elegant solution, we wanted a system that is easily portable to a

large range of hardware at our sites in
luding personal 
omputers with single

pro
ess operating systems. Therefore, we thought of using a text pro
essing

system having programming fa
ilities powerful enough to program a tree

drawing algorithm and graphi
s fa
ilities powerful enough to draw a tree.

One text pro
essing system rendering outstanding typographi
 quality and

good enough programming fa
ilities is T

E

X, developed by Knuth at Stanford

University; see [?℄. The T

E

X system in
ludes the following programming

fa
ilities:

1. datatypes:

integers (256), dimensions

1

(512), boxes (256), tokenlists (256), boolean

variables (unrestri
ted)

2. elementary statements:

a := 
onst, a := b (all types);

a := a + b, a := a � b, a := a=b (integers and dimensions);

horizontal and verti
al nesting of boxes

3. 
ontrol 
onstru
ts:

if-then-else statements testing relations between integers, dimensions,

boxes, or boolean variables

1

The term dimension is used in T

E

X to des
ribe physi
al measurements of typographi
al

obje
ts, like the length of a word.
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4. modularization 
onstru
ts:

ma
ros with up to 9 parameters (
an be viewed as pro
edures without

the 
on
ept of lo
al variables).

Although the programming fa
ilities of T

E

X hardly ex
eed the abilities

of a Turing ma
hine, they are suÆ
ient to handle relatively small programs.

How about the graphi
s fa
ilities? Although T

E

X has no built-in graphi
s

fa
ilities, it allows the pla
ement of 
hara
ters in arbitrary positions on the

page. Therefore, 
omplex pi
tures 
an be synthesized from elementary pi
-

ture elements treated as 
hara
ters. Lamport has in
luded su
h a pi
ture

drawing environment in his ma
ro pa
kage L

A

T

E

X, using quarter 
ir
les of

di�erent sizes and line segments (with and without arrow heads) of di�erent

slopes as basi
 elements; see [?℄. These elements are suÆ
ient for drawing

trees.

This survey of T

E

X's 
apabilities implies that T

E

X may be a suitable text

pro
essing system to implement a tree drawing algorithm dire
tly. We are

basing our algorithm on the RT algorithm, be
ause this algorithm gives the

aestheti
ally most pleasing results. In the �rst version presented here, we

restri
t ourselves to unary-binary trees, although our method is appli
able

to arbitrary multiway trees. But in order to take advantage of the text

pro
essing environment, we expand the algorithm to allow labelled nodes.

In 
ontrast to previous tree drawing programs, we feel no ne
essity to

position the nodes of a tree on a �xed grid. While this may be reasonable

for a plotter with a 
oarse resolution, it is 
ertainly not ne
essary for T

E

X, a

system that is 
apable of handling arbitrary dimensions and produ
es devi
e

independent output.

5 A representation method for T

E

Xtrees

The �rst problem to be solved in implementing our tree drawing algorithm

is how to 
hoose a good internal representation for trees. A straightforward

adaptation of the implementation by Reingold and Tilford requires, for ea
h

node, at least the following �elds:

1. two pointers to the 
hildren of the node

9



2. two dimensions for the o�set to the left and the right 
hild (these may

be di�erent on
e there are labels of di�erent widths to the left and right

of the nodes)

3. two dimensions for the x- and y-
oordinates of the �nal position of the

nodes

4. three or four labels

5. one token to store the geometri
 shape (
ir
le, square, framed text et
.)

of the node.

Be
ause these data are used very frequently in 
al
ulations, they should

be stored in registers (that's what variables are 
alled in T

E

X), rather than

being re
omputed, in order to obtain reasonably fast performan
e. This

gives a total of 10N registers for a tree with N nodes, whi
h would ex
eed

T

E

X's limited supply of registers. Therefore, we present a modi�ed algorithm

hand-tailored to the abilities of T

E

X. We start with the following observa-

tion. Suppose a unary-binary tree is 
onstru
ted bottom-up, in a postorder

traversal. This is done by iterating the following three steps in an order

determined by the tree to be 
onstru
ted.

1. Create a new subtree 
onsisting of one external node.

2. Create a new subtree by appending the two subtrees 
reated last to a

new binary node; see Figure ??.

3. Create a new subtree by appending the subtree 
reated last as a left,

right, or unary subtree of a new node; see Figure ??.

(A pointer to) ea
h subtree that has been 
reated in steps 1{3 is pushed

onto a sta
k, and steps 2 and 3 remove two trees or one, respe
tively, from

the sta
k before the push operation is 
arried out. Finally, the tree to be


onstru
ted will be the remaining tree on the sta
k.

This tree traversal is performed twi
e in the RT algorithm. During the

�rst pass, at ea
h exe
ution of step 2 or step 3, the relative positions of the

subtree(s) and of the new node are 
omputed. A 
loser examination of the

RT algorithm reveals that information about the subtree's 
oordinates is not

needed during this pass; the 
ontour information alone would be suÆ
ient.

10
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Figure 5: Constru
tion steps 2 and 3

Complete information is only needed in the se
ond traversal, when the tree is

a
tually drawn. Here a spe
ial feature of T

E

X 
omes in that allows us to save

registers. Unlike Pas
al, T

E

X provides the 
apability of storing a drawing in

a single box register that 
an be positioned freely in later drawings. This

means that in our implementation the two passes of the original RT algorithm


an be intertwined into a single pass, storing for ea
h subtree on the sta
k

its 
ontour and its drawing. Although the latter is a 
omplex obje
t, it takes

only one of T

E

X's pre
ious registers.

6 The internal representation

Given a tree, the 
orresponding T

E

Xtree is a box 
ontaining the \drawing" of

the tree, together with some additional information about the 
ontour of the

tree. The referen
e point of a T

E

Xtree-box is always in the root of the tree.

The height, depth, and width of the box of a T

E

Xtree are of no importan
e

in this 
ontext.

The additional information about the 
ontour of the tree is stored in some

registers for numbers and dimensions and is needed in order to put subtrees

together to form a larger tree. lo� is an array of dimensions whi
h 
ontains
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lbo�: 10pt, rbo�: 10pt.

Figure 6: A T

E

Xtree 
onsists of the drawing of the tree and the additional

information. The width of the dots is 4pt, the minimal separation between

adja
ent nodes is 16pt, making for a distan
e of 20pt 
enter to 
enter. The

length of the small rule labelling one of the nodes is 5pt. The 
olumn left

(right) of the tree drawing is the array lo� (ro� ), des
ribing the left (right)


ontour of the tree. At ea
h level, the dimension given is the horizontal o�set

between the border at the 
urrent and at the next level. The o�set between

the left border of the root node and the leftmost node at level 1 is -10pt, the

o�set between the right border of the root node and the rightmost node at

level 1 is 15pt, et
.

for ea
h level of the tree the horizontal o�set between the left end of the

leftmost node at the 
urrent level and the left end of the leftmost node at

the next level. lmo� holds the horizontal o�set between the root and the

leftmost node of the whole tree. lbo� holds the horizontal o�set between

the root and the leftmost node at the bottom level of the tree. Finally, ltop

holds the distan
e between the referen
e point of the tree and the leftmost

end of the root. The same is true for ro� , rmo� , rbo� , and rtop; just repla
e

\left" by \right". Finally, height holds the height of the tree, and type holds

the geometri
 shape of the root of the tree. Figure ?? shows an example

T

E

Xtree, i.e. a tree drawing and the 
orresponding additional information.

Given two T

E

Xtrees A and B , how 
an a new T

E

Xtree C be built that


onsists of a new root and has A and B as subtrees? An example is given in

Figure ??.
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Figure 7: The T

E

Xtrees A and B are 
ombined to form the larger T

E

Xtree C .

The small table gives the history of 
omputation for totsep and 
urrsep.
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First we determine whi
h tree is higher; this is B in the example. Then

we have to 
ompute the minimal distan
e between the roots of A and B , su
h

that at all levels of the trees there is free spa
e of at least minsep between the

trees when they are drawn side by side. For this purpose we keep tra
k of two

values, totsep and 
urrsep. The variables totsep and 
urrsep hold the total

distan
e between the roots and the distan
e between the rightmost node of A

and the leftmost node of B at the 
urrent level. In order to 
al
ulate totsep

and 
urrsep, we start at level 0 and visit ea
h level of the trees until we rea
h

the bottom level of the smaller tree; this is A in our example.

At level 0, the distan
e between the roots of A and B should be at

least minsep. Therefore, we set totsep := minsep + rtop(A) + ltop(B) and


urrsep := minsep. Using ro� (A) and lo� (B), we 
an pro
eed to 
al
ulate


urrsep for the next level. If 
urrsep < minsep, we have to in
rease totsep by

the di�eren
e and update 
urrsep. This pro
ess is iterated until we rea
h the

lowest level of A. Then totsep holds the �nal distan
e between the nodes of

A and B , as 
al
ulated by the RT algorithm. If the root of C is a signi�
ant

node, then the additional spa
e , whi
h is 0pt by default, is added to totsep.

However, the approa
h of synthesizing drawings from simple graphi
s 
har-

a
ters allows only a �nite number of orientations for the tree edges; therefore,

totsep must be in
reased slightly to �t the next orientation available.

Now we are ready to 
onstru
t the box of T

E

Xtree C . Simply put A and B

side by side, with the referen
e points totsep units apart, insert a new node

above them, and 
onne
t the parent and 
hildren by edges.

Next, we update the additional information for C . This 
an be done by

using the additional information for A and B . Note that most 
omponents

of ro� (C ) and lro� (C ) are the same as in the higher tree, whi
h is B in

our 
ase. So, if we 
an avoid moving this information around, we only have

to a

ess height(A) + 
onst many 
ounters in order to update the additional

information for C . This implies that we 
an apply the same argument as

in [?℄, whi
h gives us a running time of O(N) for drawing a tree with N

nodes.

Therefore, we must 
arefully design the storage allo
ation for the addi-

tional information of T

E

Xtrees in order to ful�ll the following requirements:

If a new tree is built from two subtrees, the additional information of the

new tree should share storage with its larger subtree. Organizational over-

head, that is, pointers whi
h keep tra
k of the lo
ations of di�erent parts of

additional information, must be avoided. This means that all the additional

14



information for one T

E

Xtree should be stored in a row of 
onse
utive dimen-

sion registers su
h that only one pointer granting a

ess to the �rst element

in this row is needed. On the other hand, ea
h parent tree is higher and

therefore needs more storage than its subtrees. So we must ensure that there

is always enough spa
e in the row for more information.

The obvious way to ful�ll these requirements is to use a sta
k and to allow

only the topmost T

E

Xtrees of this sta
k to be 
ombined into a larger tree

at any time. This leads to the following register allo
ation: A subsequent

number of box registers 
ontains the treeboxes of the subtrees in the sta
k.

A subsequent number of token registers 
ontains the type information for

the nodes of the subtrees in the sta
k. For ea
h subtree in the sta
k, a

subsequent number of dimension registers 
ontains the 
ontour information

of the subtree. The ordering of these groups of dimension registers re
e
ts the

ordering of the subtrees in the sta
k. Finally, a subsequent number of 
ounter

registers 
ontains the height and the address of the �rst dimension register

for ea
h subtree in the sta
k. Four address 
ounters store the addresses of the

last treebox, type information, height, and address of 
ontour information.

A sket
h of the register organization for a sta
k of T

E

Xtrees is provided in

Figure ??.

When a new node is pushed onto the sta
k, the treebox, type information,

height, address of 
ontour information, and 
ontour information are stored in

the next free registers of the appropriate type, and the four address 
ounters

are updated a

ordingly.

When a new tree is formed from the topmost subtrees on the sta
k, the

treebox, type information, height, and address of 
ontour information of the

new tree are sorted in the registers formerly used by the bottommost subtree

that has o

ured in the 
onstru
tion step, and the four address registers are

updated a

ordingly. This means that these informations for the subtrees are

no longer a

essible. The 
ontour information of the new subtree is stored

in the same registers as the 
ontour information of the larger subtree used in

the 
onstru
tion, apart from the left and right o�set of the root to the left

and right 
hild, whi
h are stored in the following dimension registers. That

means that gaps 
an o

ur between the 
ontour information of subsequent

subtrees in the sta
k, namely when the right subtree, whi
h is on a higher

position on the sta
k, is higher than the left one. In order to avoid these

gaps, the user 
an spe
ify an option \lefttop when entering a binary node,

whi
h makes the topmost tree in the sta
k the left subtree of the node.
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Dimension registers

lmo� (1) rmo� (1) lbo� (1) rbo� (1) ltop(1) rtop(1)

lo� (h

1

) ro� (h

1

) . . . lo� (1) ro� (1)

. . .

lmo� (n) rmo� (n) lbo� (n) rbo� (n) ltop(n) rtop(n)

lo� (h

n

) ro� (h

n

) . . . lo� (1) ro� (1)

Counter registers

lasttreebox lasttreeheight lasttreeinfo lasttreetype

treeheight(1) diminfo(1) . . . treeheight(n) diminfo(n)

Box registers

treebox (1) . . . treebox (n)

Token registers

type(1) . . . type(n)

Figure 8: lasttreebox , lasttreeheight , lasttreeinfo, lasttreetype 
ontain pointers

to treebox (n) treeheight(n), lmo� (n), type(n), diminfo(i) 
ontains a pointer

to lmo� (i). Unused dimension registers are allowed between the dimension

registers of subsequent trees. The 
ounter registers lasttreebox ,. . . ,diminfo(n)

serve as a dire
tory me
hanism to a

ess the T

E

Xtrees on the sta
k.
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This sta
k 
on
ept also has 
onsequen
es for the design of the user inter-

fa
e that is dis
ussed in Se
tion ??.

7 Spa
e 
ost analysis

Suppose we want to draw a unary-binary tree T of height h having N nodes

2

.

A

ording to our internal representation, for ea
h subtree in the sta
k we need

1. one box register to store the box of the T

E

Xtree.

2. one token register to store the type of the root of the subtree.

3. 2h

0

+ 6 dimension registers to store the additional information, where

h

0

is the height of the subtree.

4. three 
ounter registers to store the register numbers of the box register,

the token register, and the �rst dimension register above.

The following lemma relates to h and N the number of subtrees of T

whi
h are on the sta
k simultaneously and their heights.

Lemma 7.1

1. At any time, there are at most h + 1 subtrees of T on the sta
k.

2. For ea
h set T of subtrees of T whi
h are on the sta
k simultaneously

we have

X

T

0

2T

(ht(T

0

) + 1) � min(N;

(h+ 1)(h+ 2)

2

):

Proof

1. By indu
tion on h.

2

The height h and the number of nodes N refer to the drawing of the tree. N is the

number of 
ir
les, squares et
. a
tually drawn, and h is the number of levels in the drawing

minus 1.
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2. The trees in T are pairwise disjoint, and ea
h tree of height h

0

has at

least h

0

+ 1 nodes. This implies

X

T

0

2T

(ht(T

0

) + 1) � N:

The se
ond part is shown by indu
tion on h. The basis h = 0 is 
lear.

Assume the assumption holds for all trees of height less than h. If T


ontains only subtrees of either the left or the right subtree of T , we

have

X

T

0

2T

(ht(T

0

) + 1) �

h(h+ 1)

2

�

(h+ 1)(h+ 2)

2

:

Otherwise, T 
ontains the left or the right subtree T

s

of T . Then all

elements of T � fT

s

g belong to the other subtree. This implies

X

T

0

2T

(ht(T

0

) + 1) � ht(T

s

) + 1 +

X

T

0

2T �fT

s

g

(ht(T

0

) + 1)

� h+

h(h+ 1)

2

�

(h+ 1)(h+ 2)

2

: 2

Therefore, our implementation uses at most 9h + 2min(N; (h + 1)(h +

2)=2) registers. In order to 
ompare this with the 10N registers used in

the straightforward implementation, an estimation of the average height of a

tree with N nodes is needed. Several results, depending on the type of trees

and of the randomization model, are 
ited in Figure ??, whi
h 
ompares

the number of registers used in a straightforward implementation with the

average number of registers used in our implementation. This table shows


learly the advantage of our implementation.

8 The user interfa
e

8.1 General design 
onsiderations

The user interfa
e of TreeT

E

X has been designed in the spirit of the thor-

ough separation of the logi
al des
ription of do
ument 
omponents and their

layout; see [?, ?℄. This 
on
ept ensures both uniformity and 
exibility of

do
ument layout and frees authors from layout problems whi
h have nothing

18



registers average registers

nodes (straight- extended unary-binary binary

forward) binary trees trees sear
h trees

(

p

�n) [?℄ (

p

3�n) [?℄ (4:311 logn) [?℄

8 80 61.12 94.15 51.04

9 90 65.86 100.89 55.02

10 100 70.44 107.37 58.80

11 110 74.91 113.64 62.41

12 120 79.26 119.71 65.87

20 200 111.34 163.56 90.48

30 300 147.37 211.33 117.31

40 400 180.89 254.75 132.58

50 500 212.80 295.37 143.54

Figure 9: The numbers of registers used by a straightforward implementation

(se
ond 
olumn) and by our modi�ed implementation (third to �fth 
olumn)

of the RT algorithm are given for di�erent types of trees and randomiza-

tion models. The formula in parentheses indi
ates the average height of the

respe
tive 
lass of trees, as depending on the number of nodes.
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to do with the substan
e of their work. For some powerful implementations

and proje
ts see [?, ?, ?, ?, ?℄.

In this 
ontext, the des
ription of a tree is given in a purely logi
al form,

and layout variations are de�ned by a separate style 
ommand whi
h is valid

for all trees of a do
ument.

A se
ond design prin
iple is to provide defaults for all spe
i�
ations,

thereby allowing the user to omit many de�nitions if the defaults mat
h

what he or she wants.

The node des
riptions of a tree must be entered in postorder. This �ts

the internal representation of T

E

Xtrees best. Although this is a natural

method of des
ribing a tree, a user might prefer more 
exible des
ription

methods. However, note that instan
es of well de�ned tree 
lasses 
an be

des
ribed easily by T

E

X ma
ros. In se
tion ??. we give examples of ma
ros

for 
omplete binary trees and Fibona

i trees.

TreeT

E

X uses the pi
ture making ma
ros of L

A

T

E

X. If TreeT

E

X is used

with any other ma
ro pa
kage or format, the pi
ture ma
ros of L

A

T

E

X are

in
luded automati
ally.

8.2 The des
ription of a tree

The des
ription of a tree is started by the 
ommand \beginTree and 
losed

by \endTree (or \begin{Tree} and \end{Tree} in L

A

T

E

X). The des
ription


an be started in any mode; it de�nes a box and two dimensions. The box is

stored in the box register \TeXTree and 
ontains the drawing of the tree. The

box has zero height and width, and its depth is the height of the drawing. The

referen
e point is in the 
enter of the node of the tree. The dimensions are

stored in the registers \leftdist and \rightdist and des
ribe the distan
e

between the referen
e point and the left and right margin of the drawing.

These data 
an be used to position the drawing of the tree.

Note that the TreeT

E

X ma
ros don't 
ontribute anything to the 
urrent

page but only store their results in the registers \TeXTree, \leftdist, and

\rightdist. It is the user's job to put the drawing onto the page, using the


ommands \
opy or \box (or \usebox in L

A

T

E

X).

Ea
h mat
hing pair of \beginTree and \endTree must 
ontain the de-

s
ription for only one tree. Des
riptions of trees 
annot be nested and

new registers 
annot be allo
ated inside a mat
hing pair of \beginTree and

\endTree.
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As already stated, ea
h tree des
ription de�nes the nodes of the tree

in postorder, that is, a tree des
ription is a parti
ular sequen
e of node

des
riptions.

A node des
ription, in turn, 
onsists of the ma
ro \node, followed by a

list of node options, in
luded in bra
es. The list of node options may be

empty. The node options des
ribe the labels, the geometri
 shape (type),

and the outdegree of the node. Default values are provided for all options

whi
h are not expli
itly spe
i�ed. The following node options are available:

1. \lft{<label>}, \rght{<label>}, \
ntr{<label>},

\bnth{<label>}:

These options des
ribe the labels whi
h are put to the left of, to the

right of, in the 
enter of, or beneath the node (the latter only makes

sense for external nodes). The arguments of these ma
ros are pro
essed

in internal horizontal mode (LR-mode in L

A

T

E

X), but 
an 
onsist of

arbitrary nested boxes for more sophisti
ated labels. For ea
h of these

options, the default is an empty label.

2. \external, \unary, \leftonly, \rightonly:

These options des
ribe the outdegree of the node. The default is binary

(no outdegree option is spe
i�ed).

3. \type{<type>}:

This option des
ribes the type or geometri
 shape of the node. <type>


an have the values square, dot, text, or frame. The default value

is 
ir
le (no type is spe
i�ed). A node of type square has a �xed

width, while a node of type frame has its width determined by the


enter label. A node of type text has no frame around its 
enter label.

The 
enter label 
an have arbitrary width.

3. \leftthi
k, \rightthi
k: These options 
hange the thi
kness of the

left or right outgoing edge of a binary node. Defaults are thin edges

(neither option is spe
i�ed).

4. \lefttop:

The node option \lefttop in a binary node makes the last entered

subtree the left 
hild of the node (the right 
hild is the default). This

option helps to 
ut down on the number of dimension registers used
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during the 
onstru
tion of a tree. As a rule of thumb, this option is

re
ommended when the left subtree has a smaller height than the right

subtree, that is, in this 
ase the right subtree should be entered before

the left one and their parent should be assigned the option \lefttop.

8.3 Ma
ros for 
lasses of trees

Tree des
riptions 
an be produ
ed by ma
ros. This is espe
ially useful for

trees whi
h belong to a larger 
lass of trees and whi
h 
an be spe
i�ed by

some simple parameters. A small library of su
h ma
ros is provided in the

�le TreeClasses.tex.

1. \treesymbol{<node options>}:

This ma
ro produ
es a triangular tree symbol whi
h 
an be in
luded

in a tree des
ription instead of an external node. Labels for these

tree symbols are des
ribed as for ordinary nodes. In addition, the

options \lvls{<number>} and \slnt{<number>} are provided. \lvls

de�nes the number of levels in the tree over whi
h the triangle extends,

and \slnt gives the slant of the sides of the triangle, ranging from

1 (minimal) to 24 (maximal). On the other hand, \treesymbol does

not expand to a tree des
ription, be
ause a tree symbol 
annot be built

from subtrees, and, on the other hand, it is not a node, be
ause it is

allowed to extend over several tree levels and therefore has a longer


ontour than an ordinary node.

2. \binary{<bin spe
ifi
ation>}:

This ma
ro truly expands to a tree des
ription. It produ
es a 
omplete

binary tree, that is, an extended binary tree, where, for a given h, all

external nodes appear at level h or h � 1, and all external nodes at

level h lie left of those at level h�1. <bin spe
ifi
ation> 
onsists of

the following options: \no{<number>} de�nes the number of internal

nodes, with <number> greater than 0, and \squareleaves produ
es

leaves of type square. Defaults are \no{1} and leaves of type 
ir
le.

3. fibona

i{<fib spe
ifi
ation>}:

This ma
ro produ
es a Fibona

i tree. <fib spe
ifi
ation> allows

for the three options \hght{<number>}, \unarynodes, and \squareleaves.
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Normally, a Fibona

i tree of height h + 2 is a binary tree with Fi-

bona

i trees of height h and h + 1 as left and right subtrees. The

option \unarynodes means that the Fibona

i tree is augmented by

unary nodes su
h that ea
h two subtree siblings have the same height.

These are examples of what has been 
alled brother-trees in the liter-

ature; see [?℄. Defaults are \hght{0}, the unaugmented version of a

Fibona

i tree, and external nodes of type 
ir
le.

8.4 Style options for trees

The TreeT

E

X pa
kage in
ludes a style 
om-

mand \Treestyle{<style option>}, where <style option> 
ontains all

the parameter settings the user might want to 
hange. Normally, the 
om-

mand \Treestyle appears only on
e at the beginning of the do
ument and

the style options are valid for all trees of the do
ument.

The 
hanges in the style options are global. A \Treestyle 
ommand


hanges only the spe
i�ed style options; non-spe
i�ed options retain the last

spe
i�ed value or the default value, respe
tively. The following style options

are available:

1. \treefonts{<font options>}:

\treefonts is invoked by \beginTree, and it simply exe
utes whatever

is spe
i�ed in <font options>. Defaults are \treefonts{\tenrm} (or

\treefonts{\normalsize\rm} in L

A

T

E

X).

2. \nodesize{<size>}:

\nodesize de�nes the size of the nodes. <size> is a dimension and

spe
i�es the diameter of 
ir
le nodes. The width of square nodes is

adjusted a

ordingly to be slightly smaller than the diameter of 
ir
le

nodes in order to balan
e their appearan
e. Furthermore, \nodesize

adjusts the amount of spa
e by whi
h the baseline of the labels is

pla
ed beneath the 
enter of the node. The default value of \nodesize

suits the default of \treefonts (taking into a

ount the size option of

L

A

T

E

X's do
ument style).

3. \vdist{<dimen>}, \minsep{<dimen>}, \addsep{<dimen>}:

vdist spe
i�es the verti
al distan
e between two subsequent levels of
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the tree. Default is \vdist{60pt}. \minsep spe
i�es the minimal hori-

zontal distan
e between two adja
ent nodes. Default is \minsep{20pt}.

\addsep spe
i�es the additional amount of horizontal spa
e by whi
h

two subtree siblings are pushed apart farther than 
al
ulated by the

RT algorithm, if the level at whi
h they are 
losest is beneath their

root level. Default is \addsep{0pt}

4. \extended, \nonextended:

With the option \extended in e�e
t, the nodes of a binary tree are

pla
ed in exa
tly the same way as they would be in the asso
iated

extended version of the tree (the missing nodes are assumed to have no

labels). The default is \nonextended, that is the usual layout.

Some examples of tree des
riptions are given in the next �gures. A de-

tailed des
ription of the TreeT

E

X ma
ros is given in [?℄.
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\begin{Tree}

\node{\external\bnth{first}\
ntr{1}\lft{Beeton}}

\node{\external\
ntr{3}\rght{Kellermann}}

\node{\
ntr{2}\lft{Carnes}}

\node{\external\
ntr{6}\lft{Plass}}

\node{\external\bnth{last}\
ntr{8}\rght{Tobin}}

\node{\
ntr{7}\rght{Spivak}}

\node{\leftonly\
ntr{5}\rght{Lamport}}

\node{\
ntr{4}\rght{Knuth}}

\end{Tree}

\hspa
e{\leftdist}\usebox{\TeXTree}\hspa
e{\rightdist}

Figure 10: This is an example of a tree that in
ludes labels.
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Knuth

Carnes

Beeton

�rst

�

�

�

�
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T
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T

T

Kellermann

,

,

,
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,
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l

l
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Lamport

Spivak

Plass

�

�

�

�

� A

A

A

A

A

Tobin

last

�

�

�

�

�

\begin{Tree}

\node{\external\type{frame}\bnth{first}\
ntr{Beeton}}

\node{\external\type{frame}\
ntr{Kellermann}}

\node{\type{frame}\
ntr{Carnes}}

\node{\external\type{frame}\
ntr{Plass}}

\node{\external\type{frame}\bnth{last}\
ntr{Tobin}}

\node{\type{frame}\
ntr{Spivak}}

\node{\leftonly\type{frame}\
ntr{Lamport}}

\node{\type{frame}\
ntr{Knuth}}

\end{Tree}

\hspa
e{\leftdist}\usebox{\TeXTree}\hspa
e{\rightdist}

Figure 11: This is an example of a tree with framed 
enter labels.
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\begin{Tree}

\binary{\no{6}\squareleaves}

\end{Tree}

\hspa
e{\leftdist}\usebox{\TeXTree}\hspa
e{\rightdist}

Figure 12: This is an example of a 
omplete binary tree.
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\begin{Tree}

\fibona

i{\hght{4}\unarynodes\squareleaves}

\end{Tree}

\hspa
e{\leftdist}\usebox{\TeXTree}\hspa
e{\rightdist}

Figure 13: This is an example of a Fibona

i tree.
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