Preface

This textbook is intended for use by students of physics, physical chemistry, and theoretical chemistry. The reader is presumed to have a basic knowledge of atomic and quantum physics at the level provided, for example, by the first few chapters in our book *The Physics of Atoms and Quanta*. The student of physics will find here material which should be included in the basic education of every physicist. This book should furthermore allow students to acquire an appreciation of the breadth and variety within the field of molecular physics and its future as a fascinating area of research.

June 2016

Walter Olthoff Program Chair ECOOP 2016

Organization

ECOOP 2016 is organized by the department of Computer Science, University of Århus and AITO (association Internationa pour les Technologie Object) in cooperation with ACM/SIGPLAN.

Executive Commitee

Conference Chair: Program Chair:	Ole Lehrmann Madsen (Århus University, DK) Walter Olthoff (DFKI GmbH, Germany)
Organizing Chair:	Jørgen Lindskov Knudsen (Århus University,
	DK)
Tutorials:	Birger Møller-Pedersen
	(Norwegian Computing Center, Norway)
Workshops:	Eric Jul (University of Kopenhagen, Denmark)
Panels:	Boris Magnusson (Lund University, Sweden)
Exhibition:	Elmer Sandvad (Århus University, DK)
Demonstrations:	Kurt Nørdmark (Århus University, DK)

Program Commitee

Conference Chair:	Ole Lehrmann Madsen (Århus University, DK)
Program Chair:	Walter Olthoff (DFKI GmbH, Germany)
Organizing Chair:	Jørgen Lindskov Knudsen (Århus University,
	DK)
Tutorials:	Birger Møller-Pedersen
	(Norwegian Computing Center, Norway)
Workshops:	Eric Jul (University of Kopenhagen, Denmark)
Panels:	Boris Magnusson (Lund University, Sweden)
Exhibition:	Elmer Sandvad (Århus University, DK)
Demonstrations:	Kurt Nørdmark (Århus University, DK)

Referees

V. Andreev
Bärwolff
E. Barrelet
H.P. Beck
G. Bernardi
E. Binder
P.C. Bosetti

- Braunschweig F.W. Büsser T. Carli A.B. Clegg G. Cozzika S. Dagoret Del Buono
- P. DingusH. DuhmJ. EbertS. EichenbergerR.J. EllisonFeltesseW. Flauger

A. Fomenko	U. Krüger	V. Riech
G. Franke	J. Kurzhöfer	P. Robmann
J. Garvey	M.P.J. Landon	N. Sahlmann
M. Gennis	A. Lebedev	P. Schleper
L. Goerlich	Ch. Ley	Schöning
P. Goritchev	F. Linsel	B. Schwab
H. Greif	H. Lohmand	A. Semenov
E.M. Hanlon	Martin	G. Siegmon
R. Haydar	S. Masson	J.R. Smith
R.C.W. Henderso	K. Meier	M. Steenbock
P. Hill	C.A. Meyer	U. Straumann
H. Hufnagel	S. Mikocki	C. Thiebaux
A. Jacholkowska	J.V. Morris	P. Van Esch
Johannsen	B. Naroska	from Yerevan Ph
S. Kasarian	Nguyen	L.R. West
I.R. Kenyon	U. Obrock	GG. Winter
C. Kleinwort	G.D. Patel	T.P. Yiou
T. Köhler	Ch. Pichler	M. Zimmer
S.D. Kolya	S. Prell	
P. Kostka	F. Raupach	

Sponsoring Institutions

V. Meyer Inc., Reading, MA, USA The Hofmann-International Company, San Louis Obispo, CA, USA Kramer Industries, Heidelberg, Germany

Contents

Ι	Hamiltonian Mechanics		
 Hamiltonian Mechanics unter besonderer Berücksichtigung der höhereren Lehranstalten			
Π	Theoretical Contributions		
Ηa	amiltonian Mechanics2 Ivar Ekeland and Roger Temam	11	
A	uthor Index	17	

Part I

Hamiltonian Mechanics

Hamiltonian Mechanics unter besonderer Berücksichtigung der höhereren Lehranstalten

Ivar Ekeland¹, Roger Temam² Jeffrey Dean, David Grove, Craig Chambers, Kim B. Bruce, and Elsa Bertino

 ¹ Princeton University, Princeton NJ 08544, USA, I.Ekeland@princeton.edu, WWW home page: http://users/~iekeland/web/welcome.html
 ² Université de Paris-Sud, Laboratoire d'Analyse Numérique, Bâtiment 425, F-91405 Orsay Cedex, France

Abstract. The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. ...

Keywords: computational geometry, graph theory, Hamilton cycles

1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic solutions to Hamiltonian systems. All this will be done in the convex case; that is, we shall study the boundary-value problem

$$\dot{x} = JH'(t, x)$$
$$x(0) = x(T)$$

with $H(t, \cdot)$ a convex function of x, going to $+\infty$ when $||x|| \to \infty$.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is autonomous. For the sake of simplicity, we shall also assume that it is C^1 .

We shall first consider the question of nontriviality, within the general framework of (A_{∞}, B_{∞}) -subquadratic Hamiltonians. In the second subsection, we shall look into the special case when H is $(0, b_{\infty})$ -subquadratic, and we shall try to derive additional information.

The General Case: Nontriviality. We assume that H is (A_{∞}, B_{∞}) -subquadratic at infinity, for some constant symmetric matrices A_{∞} and B_{∞} , with $B_{\infty} - A_{\infty}$ positive definite. Set:

$$\gamma := \text{smallest eigenvalue of } B_{\infty} - A_{\infty} \tag{1}$$

$$\lambda := \text{largest negative eigenvalue of } J\frac{d}{dt} + A_{\infty} .$$
 (2)

4 Ivar Ekeland et al.

Theorem 1 tells us that if $\lambda + \gamma < 0$, the boundary-value problem:

$$\dot{x} = JH'(x)
x(0) = x(T)$$
(3)

has at least one solution \overline{x} , which is found by minimizing the dual action functional:

$$\psi(u) = \int_{o}^{T} \left[\frac{1}{2} \left(\Lambda_{o}^{-1} u, u \right) + N^{*}(-u) \right] dt$$
(4)

on the range of Λ , which is a subspace $R(\Lambda)_L^2$ with finite codimension. Here

$$N(x) := H(x) - \frac{1}{2} (A_{\infty} x, x)$$
(5)

is a convex function, and

$$N(x) \le \frac{1}{2} \left(\left(B_{\infty} - A_{\infty} \right) x, x \right) + c \quad \forall x \;. \tag{6}$$

Proposition 1. Assume H'(0) = 0 and H(0) = 0. Set:

$$\delta := \liminf_{x \to 0} 2N(x) \|x\|^{-2} .$$
(7)

If $\gamma < -\lambda < \delta$, the solution \overline{u} is non-zero:

$$\overline{x}(t) \neq 0 \quad \forall t \ . \tag{8}$$

Proof. Condition (7) means that, for every $\delta' > \delta$, there is some $\varepsilon > 0$ such that

$$\|x\| \le \varepsilon \Rightarrow N(x) \le \frac{\delta'}{2} \|x\|^2 \quad . \tag{9}$$

It is an exercise in convex analysis, into which we shall not go, to show that this implies that there is an $\eta > 0$ such that

$$f \|x\| \le \eta \Rightarrow N^*(y) \le \frac{1}{2\delta'} \|y\|^2 .$$
(10)

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field

Since u_1 is a smooth function, we will have $||hu_1||_{\infty} \leq \eta$ for h small enough, and inequality (10) will hold, yielding thereby:

$$\psi(hu_1) \le \frac{h^2}{2} \frac{1}{\lambda} \|u_1\|_2^2 + \frac{h^2}{2} \frac{1}{\delta'} \|u_1\|^2 \quad . \tag{11}$$

If we choose δ' close enough to δ , the quantity $\left(\frac{1}{\lambda} + \frac{1}{\delta'}\right)$ will be negative, and we end up with

$$\psi(hu_1) < 0 \quad \text{for } h \neq 0 \text{ small} .$$
(12)

On the other hand, we check directly that $\psi(0) = 0$. This shows that 0 cannot be a minimizer of ψ , not even a local one. So $\overline{u} \neq 0$ and $\overline{u} \neq \Lambda_o^{-1}(0) = 0$. \Box

Corollary 1. Assume H is C^2 and (a_{∞}, b_{∞}) -subquadratic at infinity. Let ξ_1 , ..., ξ_N be the equilibria, that is, the solutions of $H'(\xi) = 0$. Denote by ω_k the smallest eigenvalue of $H''(\xi_k)$, and set:

$$\omega := \operatorname{Min} \{\omega_1, \dots, \omega_k\} \quad . \tag{13}$$

If:

$$\frac{T}{2\pi}b_{\infty} < -E\left[-\frac{T}{2\pi}a_{\infty}\right] < \frac{T}{2\pi}\omega \tag{14}$$

then minimization of ψ yields a non-constant T-periodic solution \overline{x} .

We recall once more that by the integer part $E[\alpha]$ of $\alpha \in \mathbb{R}$, we mean the $a \in \mathbb{Z}$ such that $a < \alpha \leq a + 1$. For instance, if we take $a_{\infty} = 0$, Corollary 2 tells us that \overline{x} exists and is non-constant provided that:

$$\frac{T}{2\pi}b_{\infty} < 1 < \frac{T}{2\pi} \tag{15}$$

or

$$T \in \left(\frac{2\pi}{\omega}, \frac{2\pi}{b_{\infty}}\right) . \tag{16}$$

Proof. The spectrum of Λ is $\frac{2\pi}{T}Z + a_{\infty}$. The largest negative eigenvalue λ is given by $\frac{2\pi}{T}k_o + a_{\infty}$, where

$$\frac{2\pi}{T}k_o + a_\infty < 0 \le \frac{2\pi}{T}(k_o + 1) + a_\infty .$$
(17)

Hence:

$$k_o = E\left[-\frac{T}{2\pi}a_\infty\right] \ . \tag{18}$$

The condition $\gamma < -\lambda < \delta$ now becomes:

$$b_{\infty} - a_{\infty} < -\frac{2\pi}{T}k_o - a_{\infty} < \omega - a_{\infty} \tag{19}$$

which is precisely condition (14).

6 Ivar Ekeland et al.

Lemma 1. Assume that H is C^2 on $\mathbb{R}^{2n} \setminus \{0\}$ and that H''(x) is non-degenerate for any $x \neq 0$. Then any local minimizer \tilde{x} of ψ has minimal period T.

Proof. We know that \tilde{x} , or $\tilde{x} + \xi$ for some constant $\xi \in \mathbb{R}^{2n}$, is a *T*-periodic solution of the Hamiltonian system:

$$\dot{x} = JH'(x) . \tag{20}$$

There is no loss of generality in taking $\xi = 0$. So $\psi(x) \ge \psi(\tilde{x})$ for all \tilde{x} in some neighbourhood of x in $W^{1,2}(\mathbb{R}/T\mathbb{Z};\mathbb{R}^{2n})$.

But this index is precisely the index $i_T(\tilde{x})$ of the *T*-periodic solution \tilde{x} over the interval (0, T), as defined in Sect. 2.6. So

$$i_T(\widetilde{x}) = 0 . (21)$$

Now if \tilde{x} has a lower period, T/k say, we would have, by Corollary 31:

$$i_T(\widetilde{x}) = i_{kT/k}(\widetilde{x}) \ge k i_{T/k}(\widetilde{x}) + k - 1 \ge k - 1 \ge 1 .$$

$$(22)$$

This would contradict (21), and thus cannot happen.

Notes and Comments. The results in this section are a refined version of [1]; the minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one may think of a one-parameter family x_T , $T \in (2\pi\omega^{-1}, 2\pi b_{\infty}^{-1})$ of periodic solutions, $x_T(0) = x_T(T)$, with x_T going away to infinity when $T \to 2\pi\omega^{-1}$, which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year	World population
8000 B.C.	5,000,000
50 A.D.	200,000,000
1650 A.D.	500,000,000
1945 A.D.	2,300,000,000
1980 A.D.	4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t, x) is $(0, \varepsilon)$ -subquadratic at infinity for all $\varepsilon > 0$, and T-periodic in t

$$H(t, \cdot)$$
 is convex $\forall t$ (23)

 $H(\cdot, x)$ is *T*-periodic $\forall x$ (24)

$$H(t,x) \ge n(||x||)$$
 with $n(s)s^{-1} \to \infty$ as $s \to \infty$ (25)

Hamiltonian Mechanics

$$\forall \varepsilon > 0 , \quad \exists c : H(t, x) \le \frac{\varepsilon}{2} \|x\|^2 + c .$$
 (26)

Assume also that H is C^2 , and H''(t, x) is positive definite everywhere. Then there is a sequence $x_k, k \in \mathbb{N}$, of kT-periodic solutions of the system

$$\dot{x} = JH'(t, x) \tag{27}$$

such that, for every $k \in \mathbb{N}$, there is some $p_o \in \mathbb{N}$ with:

$$p \ge p_o \Rightarrow x_{pk} \ne x_k . \tag{28}$$

Example 1 (External forcing). Consider the system:

$$\dot{x} = JH'(x) + f(t) \tag{29}$$

where the Hamiltonian H is $(0, b_{\infty})$ -subquadratic, and the forcing term is a distribution on the circle:

$$f = \frac{d}{dt}F + f_o \quad \text{with} \quad F \in L^2\left(\mathbb{R}/TZ; \mathbb{R}^{2n}\right) , \qquad (30)$$

where $f_o := T^{-1} \int_o^T f(t) dt$. For instance,

$$f(t) = \sum_{k \in \mathbb{N}} \delta_k \xi , \qquad (31)$$

where δ_k is the Dirac mass at t = k and $\xi \in \mathbb{R}^{2n}$ is a constant, fits the prescription. This means that the system $\dot{x} = JH'(x)$ is being excited by a series of identical shocks at interval T.

Definition 1. Let $A_{\infty}(t)$ and $B_{\infty}(t)$ be symmetric operators in \mathbb{R}^{2n} , depending continuously on $t \in [0,T]$, such that $A_{\infty}(t) \leq B_{\infty}(t)$ for all t. A Borelian function $H : [0,T] \times \mathbb{R}^{2n} \to \mathbb{R}$ is called (A_{∞}, B_{∞}) -subquadratic

at infinity if there exists a function N(t, x) such that:

$$H(t,x) = \frac{1}{2} \left(A_{\infty}(t)x, x \right) + N(t,x)$$
(32)

$$\forall t , N(t,x)$$
 is convex with respect to x (33)

$$N(t,x) \ge n(\|x\|) \quad \text{with } n(s)s^{-1} \to +\infty \quad \text{as } s \to +\infty \tag{34}$$

$$\exists c \in \mathbb{R} : \quad H(t,x) \le \frac{1}{2} \left(B_{\infty}(t)x, x \right) + c \quad \forall x .$$
(35)

If $A_{\infty}(t) = a_{\infty}I$ and $B_{\infty}(t) = b_{\infty}I$, with $a_{\infty} \leq b_{\infty} \in \mathbb{R}$, we shall say that H is (a_{∞}, b_{∞}) -subquadratic at infinity. As an example, the function $||x||^{\alpha}$, with $1 \leq \alpha < 2$, is $(0,\varepsilon)$ -subquadratic at infinity for every $\varepsilon > 0$. Similarly, the Hamiltonian

$$H(t,x) = \frac{1}{2}k \|k\|^2 + \|x\|^{\alpha}$$
(36)

is $(k, k + \varepsilon)$ -subquadratic for every $\varepsilon > 0$. Note that, if k < 0, it is not convex.

7

8 Ivar Ekeland et al.

Notes and Comments. The first results on subharmonics were obtained by Rabinowitz in [5], who showed the existence of infinitely many subharmonics both in the subquadratic and superquadratic case, with suitable growth conditions on H'. Again the duality approach enabled Clarke and Ekeland in [2] to treat the same problem in the convex-subquadratic case, with growth conditions on H only.

Recently, Michalek and Tarantello (see [3] and [4]) have obtained lower bound on the number of subharmonics of period kT, based on symmetry considerations and on pinching estimates, as in Sect. 5.2 of this article.

References

- Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195?197 (1981). doi:10.1016/0022-2836(81)90087-5
- May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148?1158. Springer, Heidelberg (2006). doi:10.1007/11823285_121
- 3. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)
- Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181?184. IEEE Press, New York (2001). doi:10.1109/HPDC.2001.945188
- 5. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems integration. Technical report, Global Grid Forum (2002)
- 6. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

Part II

Theoretical Contributions

Hamiltonian Mechanics2

Ivar Ekeland¹ and Roger Temam²

 ¹ Princeton University, Princeton NJ 08544, USA
 ² Université de Paris-Sud, Laboratoire d'Analyse Numérique, Bâtiment 425, F-91405 Orsay Cedex, France

Abstract. The abstract should summarize the contents of the paper using at least 70 and at most 150 words. It will be set in 9-point font size and be inset 1.0 cm from the right and left margins. There will be two blank lines before and after the Abstract. ...

Keywords: graph transformations, convex geometry, lattice computations, convex polygons, triangulations, discrete geometry

1 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic solutions to Hamiltonian systems. All this will be done in the convex case; that is, we shall study the boundary-value problem

$$\dot{x} = JH'(t, x)$$
$$x(0) = x(T)$$

with $H(t, \cdot)$ a convex function of x, going to $+\infty$ when $||x|| \to \infty$.

1.1 Autonomous Systems

In this section, we will consider the case when the Hamiltonian H(x) is autonomous. For the sake of simplicity, we shall also assume that it is C^1 .

We shall first consider the question of nontriviality, within the general framework of (A_{∞}, B_{∞}) -subquadratic Hamiltonians. In the second subsection, we shall look into the special case when H is $(0, b_{\infty})$ -subquadratic, and we shall try to derive additional information.

The General Case: Nontriviality. We assume that H is (A_{∞}, B_{∞}) -subquadratic at infinity, for some constant symmetric matrices A_{∞} and B_{∞} , with $B_{\infty} - A_{\infty}$ positive definite. Set:

$$\gamma := \text{smallest eigenvalue of } B_{\infty} - A_{\infty} \tag{1}$$

$$\lambda := \text{largest negative eigenvalue of } J\frac{d}{dt} + A_{\infty} .$$
 (2)

12 Ivar Ekeland and Roger Temam

Theorem 21 tells us that if $\lambda + \gamma < 0$, the boundary-value problem:

$$\dot{x} = JH'(x)
x(0) = x(T)$$
(3)

has at least one solution \overline{x} , which is found by minimizing the dual action functional:

$$\psi(u) = \int_{o}^{T} \left[\frac{1}{2} \left(\Lambda_{o}^{-1} u, u \right) + N^{*}(-u) \right] dt$$
(4)

on the range of Λ , which is a subspace $R(\Lambda)_L^2$ with finite codimension. Here

$$N(x) := H(x) - \frac{1}{2} (A_{\infty} x, x)$$
(5)

is a convex function, and

$$N(x) \le \frac{1}{2} \left(\left(B_{\infty} - A_{\infty} \right) x, x \right) + c \quad \forall x \;. \tag{6}$$

Proposition 1. Assume H'(0) = 0 and H(0) = 0. Set:

$$\delta := \liminf_{x \to 0} 2N(x) \|x\|^{-2} .$$
(7)

If $\gamma < -\lambda < \delta$, the solution \overline{u} is non-zero:

$$\overline{x}(t) \neq 0 \quad \forall t \ . \tag{8}$$

Proof. Condition (7) means that, for every $\delta' > \delta$, there is some $\varepsilon > 0$ such that

$$\|x\| \le \varepsilon \Rightarrow N(x) \le \frac{\delta'}{2} \|x\|^2 \quad . \tag{9}$$

It is an exercise in convex analysis, into which we shall not go, to show that this implies that there is an $\eta > 0$ such that

$$f \|x\| \le \eta \Rightarrow N^*(y) \le \frac{1}{2\delta'} \|y\|^2 .$$
(10)

Fig. 1. This is the caption of the figure displaying a white eagle and a white horse on a snow field

Since u_1 is a smooth function, we will have $||hu_1||_{\infty} \leq \eta$ for h small enough, and inequality (10) will hold, yielding thereby:

$$\psi(hu_1) \le \frac{h^2}{2} \frac{1}{\lambda} \|u_1\|_2^2 + \frac{h^2}{2} \frac{1}{\delta'} \|u_1\|^2 \quad . \tag{11}$$

If we choose δ' close enough to δ , the quantity $\left(\frac{1}{\lambda} + \frac{1}{\delta'}\right)$ will be negative, and we end up with

$$\psi(hu_1) < 0 \quad \text{for } h \neq 0 \text{ small} .$$
 (12)

On the other hand, we check directly that $\psi(0) = 0$. This shows that 0 cannot be a minimizer of ψ , not even a local one. So $\overline{u} \neq 0$ and $\overline{u} \neq \Lambda_o^{-1}(0) = 0$. \Box

Corollary 1. Assume H is C^2 and (a_{∞}, b_{∞}) -subquadratic at infinity. Let ξ_1 , ..., ξ_N be the equilibria, that is, the solutions of $H'(\xi) = 0$. Denote by ω_k the smallest eigenvalue of $H''(\xi_k)$, and set:

$$\omega := \operatorname{Min} \{\omega_1, \dots, \omega_k\} \quad . \tag{13}$$

If:

$$\frac{T}{2\pi}b_{\infty} < -E\left[-\frac{T}{2\pi}a_{\infty}\right] < \frac{T}{2\pi}\omega \tag{14}$$

then minimization of ψ yields a non-constant T-periodic solution \overline{x} .

We recall once more that by the integer part $E[\alpha]$ of $\alpha \in \mathbb{R}$, we mean the $a \in \mathbb{Z}$ such that $a < \alpha \leq a + 1$. For instance, if we take $a_{\infty} = 0$, Corollary 2 tells us that \overline{x} exists and is non-constant provided that:

$$\frac{T}{2\pi}b_{\infty} < 1 < \frac{T}{2\pi} \tag{15}$$

or

$$T \in \left(\frac{2\pi}{\omega}, \frac{2\pi}{b_{\infty}}\right) . \tag{16}$$

Proof. The spectrum of Λ is $\frac{2\pi}{T}Z + a_{\infty}$. The largest negative eigenvalue λ is given by $\frac{2\pi}{T}k_o + a_{\infty}$, where

$$\frac{2\pi}{T}k_o + a_\infty < 0 \le \frac{2\pi}{T}(k_o + 1) + a_\infty .$$
(17)

Hence:

$$k_o = E\left[-\frac{T}{2\pi}a_\infty\right] \ . \tag{18}$$

The condition $\gamma < -\lambda < \delta$ now becomes:

$$b_{\infty} - a_{\infty} < -\frac{2\pi}{T}k_o - a_{\infty} < \omega - a_{\infty} \tag{19}$$

which is precisely condition (14).

14 Ivar Ekeland and Roger Temam

Lemma 1. Assume that H is C^2 on $\mathbb{R}^{2n} \setminus \{0\}$ and that H''(x) is non-degenerate for any $x \neq 0$. Then any local minimizer \tilde{x} of ψ has minimal period T.

Proof. We know that \tilde{x} , or $\tilde{x} + \xi$ for some constant $\xi \in \mathbb{R}^{2n}$, is a *T*-periodic solution of the Hamiltonian system:

$$\dot{x} = JH'(x) . \tag{20}$$

There is no loss of generality in taking $\xi = 0$. So $\psi(x) \ge \psi(\tilde{x})$ for all \tilde{x} in some neighbourhood of x in $W^{1,2}(\mathbb{R}/T\mathbb{Z};\mathbb{R}^{2n})$.

But this index is precisely the index $i_T(\tilde{x})$ of the *T*-periodic solution \tilde{x} over the interval (0, T), as defined in Sect. 2.6. So

$$i_T(\widetilde{x}) = 0 . (21)$$

Now if \tilde{x} has a lower period, T/k say, we would have, by Corollary 31:

$$i_T(\widetilde{x}) = i_{kT/k}(\widetilde{x}) \ge k i_{T/k}(\widetilde{x}) + k - 1 \ge k - 1 \ge 1 .$$

$$(22)$$

This would contradict (21), and thus cannot happen.

Notes and Comments. The results in this section are a refined version of 1982; the minimality result of Proposition 14 was the first of its kind.

To understand the nontriviality conditions, such as the one in formula (16), one may think of a one-parameter family x_T , $T \in (2\pi\omega^{-1}, 2\pi b_{\infty}^{-1})$ of periodic solutions, $x_T(0) = x_T(T)$, with x_T going away to infinity when $T \to 2\pi\omega^{-1}$, which is the period of the linearized system at 0.

Table 1. This is the example table taken out of The TEXbook, p. 246

Year	World population
8000 B.C.	5,000,000
50 A.D.	200,000,000
1650 A.D.	500,000,000
1945 A.D.	2,300,000,000
1980 A.D.	4,400,000,000

Theorem 1 (Ghoussoub-Preiss). Assume H(t,x) is $(0,\varepsilon)$ -subquadratic at infinity for all $\varepsilon > 0$, and T-periodic in t

$$H(t, \cdot)$$
 is convex $\forall t$ (23)

 $H(\cdot, x) \quad \text{ is } T - \text{periodic } \forall x \tag{24}$

$$H(t,x) \ge n(||x||)$$
 with $n(s)s^{-1} \to \infty$ as $s \to \infty$ (25)

$$\forall \varepsilon > 0 , \quad \exists c : H(t, x) \le \frac{\varepsilon}{2} \|x\|^2 + c .$$
(26)

Assume also that H is C^2 , and H''(t, x) is positive definite everywhere. Then there is a sequence $x_k, k \in \mathbb{N}$, of kT-periodic solutions of the system

$$\dot{x} = JH'(t, x) \tag{27}$$

such that, for every $k \in \mathbb{N}$, there is some $p_o \in \mathbb{N}$ with:

$$p \ge p_o \Rightarrow x_{pk} \ne x_k . \tag{28}$$

Example 1 (External forcing). Consider the system:

$$\dot{x} = JH'(x) + f(t) \tag{29}$$

where the Hamiltonian H is $(0, b_{\infty})$ -subquadratic, and the forcing term is a distribution on the circle:

$$f = \frac{d}{dt}F + f_o \quad \text{with} \quad F \in L^2\left(\mathbb{R}/TZ; \mathbb{R}^{2n}\right) , \qquad (30)$$

where $f_o := T^{-1} \int_o^T f(t) dt$. For instance,

$$f(t) = \sum_{k \in \mathbb{N}} \delta_k \xi , \qquad (31)$$

where δ_k is the Dirac mass at t = k and $\xi \in \mathbb{R}^{2n}$ is a constant, fits the prescription. This means that the system $\dot{x} = JH'(x)$ is being excited by a series of identical shocks at interval T.

Definition 1. Let $A_{\infty}(t)$ and $B_{\infty}(t)$ be symmetric operators in \mathbb{R}^{2n} , depending continuously on $t \in [0,T]$, such that $A_{\infty}(t) \leq B_{\infty}(t)$ for all t. A Borelian function $H : [0,T] \times \mathbb{R}^{2n} \to \mathbb{R}$ is called (A_{∞}, B_{∞}) -subquadratic

at infinity if there exists a function N(t, x) such that:

$$H(t,x) = \frac{1}{2} \left(A_{\infty}(t)x, x \right) + N(t,x)$$
(32)

$$\forall t , N(t,x)$$
 is convex with respect to x (33)

$$N(t,x) \ge n(\|x\|) \quad \text{with } n(s)s^{-1} \to +\infty \quad \text{as } s \to +\infty \tag{34}$$

$$\exists c \in \mathbb{R} : \quad H(t,x) \le \frac{1}{2} \left(B_{\infty}(t)x, x \right) + c \quad \forall x .$$
(35)

If $A_{\infty}(t) = a_{\infty}I$ and $B_{\infty}(t) = b_{\infty}I$, with $a_{\infty} \leq b_{\infty} \in \mathbb{R}$, we shall say that H is (a_{∞}, b_{∞}) -subquadratic at infinity. As an example, the function $||x||^{\alpha}$, with $1 \leq \alpha < 2$, is $(0,\varepsilon)$ -subquadratic at infinity for every $\varepsilon > 0$. Similarly, the Hamiltonian

$$H(t,x) = \frac{1}{2}k \|k\|^{2} + \|x\|^{\alpha}$$
(36)

is $(k, k + \varepsilon)$ -subquadratic for every $\varepsilon > 0$. Note that, if k < 0, it is not convex.

16 Ivar Ekeland and Roger Temam

Notes and Comments. The first results on subharmonics were obtained by Rabinowitz in 1988, who showed the existence of infinitely many subharmonics both in the subquadratic and superquadratic case, with suitable growth conditions on H'. Again the duality approach enabled Clarke and Ekeland in 1978 to treat the same problem in the convex-subquadratic case, with growth conditions on H only.

Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G. 1988 and Tarantello, G. (to appear)) have obtained lower bound on the number of subharmonics of period kT, based on symmetry considerations and on pinching estimates, as in Sect. 5.2 of this article.

References

- Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147, 195?197 (1981). doi:10.1016/0022-2836(81)90087-5
- May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148?1158. Springer, Heidelberg (2006). doi:10.1007/11823285_121
- May, P., Ehrlich, H.-C., Steinke, T.: ZIB structure prediction pipeline: composing a complex biological workflow through web services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par 2006. LNCS, vol. 4128, pp. 1148?1158. Springer, Heidelberg (2006). doi:10.1007/11823285_121
- Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services for distributed resource sharing. In: 10th IEEE International Symposium on High Performance Distributed Computing, pp. 181?184. IEEE Press, New York (2001). doi:10.1109/HPDC.2001.945188
- Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the grid: an open grid services architecture for distributed systems integration. Technical report, Global Grid Forum (2002)

National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov

Author Index

Bertino, E., 3 Chambers, C., 3 Dean, J., 3 Ekeland, I., 3, 11 Grove, D., 3

Kim, B., 3

Temam, R., 3, 11