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Welcome to the World of Pointers !
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Outline
 Schedule
 Memory organization
 Caching
 Different types of locality
 Cache organization

 Cache lab
 Part (a) Building Cache Simulator
 Part (b) Efficient Matrix Transpose
 Blocking
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Class Schedule
 Cache Lab
 Due this Thursday, Oct 15th.
 Start now ( if you haven’t already!)

 Exam Soon !
 Start doing practice problems.
 They have been uploaded on to the Course Website!
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Memory Hierarchy

Registers

L1 cache
(SRAM)

Main 
memory
(DRAM)

Local secondary 
storage

(local disks)

Larger,  
slower, 
cheaper 
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers

Main memory holds disk blocks 
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from 
L2 cache

CPU registers hold words retrieved from L1 
cache

L2 cache holds cache lines retrieved 
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte
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Memory Hierarchy

We will discuss this interaction

 Registers

 SRAM

 DRAM

 Local Secondary storage

 Remote Secondary storage
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SRAM vs DRAM tradeoff
 SRAM (cache)
 Faster (L1 cache: 1 CPU cycle)
 Smaller (Kilobytes (L1) or Megabytes (L2))
 More expensive and “energy-hungry”

 DRAM (main memory)
 Relatively slower (hundreds of CPU cycles)
 Larger (Gigabytes)
 Cheaper
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Locality
 Temporal locality
 Recently referenced items are likely 

to be referenced again in the near future
 After accessing address X in memory, save the bytes in cache for 

future access

 Spatial locality
 Items with nearby addresses tend 

to be referenced close together in time
 After accessing address X, save the block of memory around X in 

cache for future access
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Memory Address
 64-bit on shark machines

 Block offset:  b bits
 Set index:  s bits
 Tag Bits: (Address Size – b – s) 
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Cache

 A cache is a set of 2^s cache sets

 A cache set is a set of E cache lines
 E is called associativity
 If E=1, it is called “direct-mapped”

 Each cache line stores a block
 Each block has B = 2^b bytes

 Total Capacity = S*B*E
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Visual Cache Terminology
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset
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General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10
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General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)
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General Caching Concepts: 
Types of Cache Misses

 Cold (compulsory) miss
 The first access to a block has to be a miss

 Conflict miss
 Conflict misses occur when the level k cache is large enough, but multiple 

data objects all map to the same level k block
 E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger than 

the cache
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Cache Lab
 Part (a) Building a cache simulator

 Part (b) Optimizing matrix transpose
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Part (a) : Cache simulator
 A cache simulator is NOT a cache! 
 Memory contents NOT stored
 Block offsets are NOT used – the b bits in your address don’t 

matter.
 Simply count hits, misses, and evictions

 Your cache simulator needs to work for different s, b, E, 
given at run time.

 Use LRU – Least Recently Used replacement policy
 Evict the least recently used block from the cache to make room 

for the next block.
 Queues ? Time Stamps ?
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Part (a) : Hints
 A cache is just 2D array of cache lines:
 struct cache_line cache[S][E];
 S = 2^s,  is the number of sets
 E is associativity

 Each cache_line has:
 Valid bit
 Tag
 LRU counter ( only if you are not using a queue ) 
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Part (a) :  getopt

getopt() automates parsing elements on the unix command  
line If function declaration is missing
 Typically called in a loop to retrieve arguments
 Its return value is stored in a local variable
 When getopt() returns -1, there are no more options

To use getopt, your program must include the header  file 
#include <unistd.h>

If not running on the shark machines then you will need 
#include <getopt.h>. 
 Better Advice: Run on Shark Machines ! 
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Part (a) : getopt
 A switch statement is used on the local variable holding 
the return value from getopt()
 Each command line input case can be taken care of separately
 “optarg” is an important variable – it will point to the value of the 

option argument

 Think about how to handle invalid inputs

 For more information,
 look at man 3 getopt
 http://www.gnu.org/software/libc/manual/html_node/Getopt.ht

ml
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Part (a) : getopt Example
int main(int argc, char** argv){

int opt,x,y;
/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:y:"))){

/* determine which argument it’s processing */
switch(opt) { 

case 'x':
x = atoi(optarg);
break;

case ‘y':
y = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

 Suppose the program executable was called “foo”. 
Then we would call “./foo -x 1 –y 3“ to pass the value 1 
to variable x and 3 to y.
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Part (a) : fscanf
The fscanf() function is just like scanf() except it can specify 
a stream to read from (scanf always reads from stdin)
 parameters: 

 A stream pointer
 format string with information on how to parse the file 
 the rest are pointers to variables to store the parsed data 

 You typically want to use this function in a loop. It returns -1 when 
it hits EOF or if the data doesn’t match the format string

 For more information,
 man fscanf
 http://crasseux.com/books/ctutorial/fscanf.html

 fscanf will be useful in reading lines from the trace files. 
 L 10,1
 M 20,1
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Part (a) : fscanf example
FILE * pFile; //pointer to FILE object

pFile = fopen ("tracefile.txt",“r"); //open file for reading

char identifier;
unsigned address;
int size;
// Reading lines like " M 20,1" or "L 19,3"

while(fscanf(pFile,“ %c %x,%d”, &identifier, &address, &size)>0)
{

// Do stuff
}

fclose(pFile); //remember to close file when done
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Part (a) : Malloc/free
 Use malloc to allocate memory on the heap 

 Always free what you malloc, otherwise may 
get memory leak
 some_pointer_you_malloced = malloc(sizeof(int));
 Free(some_pointer_you_malloced);

 Don’t free memory you didn’t allocate
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1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part (b) Efficient Matrix Transpose

 Matrix Transpose  (A  ->  B)
Matrix A Matrix B

 How do we optimize this operation using the 
cache?
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Part (b) : Efficient Matrix Transpose
 Suppose Block size is 8 bytes ?

 Access A[0][0] cache miss Should we handle 3 & 4  
 Access B[0][0] cache miss next or 5 & 6 ?
 Access A[0][1] cache hit
 Access B[1][0] cache miss
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Part (b) : Blocking

 Blocking: divide matrix into sub-matrices. 

 Size of sub-matrix depends on cache block size, 
cache size, input matrix size.

 Try different sub-matrix sizes.
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Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

}
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Cache Miss Analysis
 Assume: 
 Matrix elements are doubles
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

 Afterwards in cache:
(schematic)

*=

n

*=
8 wide
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Cache Miss Analysis
 Assume: 
 Matrix elements are doubles
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)

 Second iteration:
 Again:

n/8 + n = 9n/8 misses

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

*=
8 wide
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Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)
for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)
c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=
c

+

Block size B x B
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Cache Miss Analysis
 Assume: 
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)
 Three blocks       fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block
 2n/B * B2/8 = nB/4

(omitting matrix c)

 Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks
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Cache Miss Analysis
 Assume: 
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)
 Three blocks       fit into cache: 3B2 < C

 Second (block) iteration:
 Same as first iteration
 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks
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Part(b) : Blocking Summary
 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!
 But program has to be written properly

 For a detailed discussion of blocking:
 http://csapp.cs.cmu.edu/public/waside.html
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Part (b) : Specs

 Cache:
 You get 1 kilobytes of cache
 Directly mapped (E=1)
 Block size is 32 bytes (b=5)
 There are 32 sets (s=5)

 Test Matrices:
 32 by 32
 64 by 64
 61 by 67
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Part (b)

 Things you’ll need to know:
 Warnings are errors
 Header files
 Eviction policies in the cache
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Warnings are Errors
 Strict compilation flags

 Reasons:
 Avoid potential errors that are hard to debug
 Learn good habits from the beginning

 Add “-Werror” to your compilation flags
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Missing Header Files
 Remember to include files that we will be using functions 

from

 If function declaration is missing
 Find corresponding header files
 Use: man <function-name> 

 Live example
 man 3 getopt
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Eviction policies of Cache
 The first row of Matrix A evicts the first row of Matrix B
 Caches are memory aligned.
 Matrix A and B are stored in memory at addresses such that both 

the first elements align to the same place in cache!
 Diagonal elements evict each other.

 Matrices are stored in memory in a row major order.
 If the entire matrix can’t fit in the cache, then after the cache is full 

with all the elements it can load. The next elements will evict the 
existing elements of the cache.

 Example:- 4x4 Matrix of integers and a 32 byte cache.
 The third row will evict the first row!
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Style
 Read the style guideline
 But I already read it!
 Good, read it again.

 Start forming good habits now!
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Questions?
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