
Carnegie Mellon

1

Cache Lab Implementation and
Blocking

Aditya Shah
Oct 8th, 2015

Carnegie Mellon

2

Welcome to the World of Pointers !

Carnegie Mellon

3

Outline
 Schedule
 Memory organization
 Caching
 Different types of locality
 Cache organization

 Cache lab
 Part (a) Building Cache Simulator
 Part (b) Efficient Matrix Transpose
 Blocking

Carnegie Mellon

4

Class Schedule
 Cache Lab
 Due this Thursday, Oct 15th.
 Start now (if you haven’t already!)

 Exam Soon !
 Start doing practice problems.
 They have been uploaded on to the Course Website!

Carnegie Mellon

5

Memory Hierarchy

Registers

L1 cache
(SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

Carnegie Mellon

6

Memory Hierarchy

We will discuss this interaction

 Registers

 SRAM

 DRAM

 Local Secondary storage

 Remote Secondary storage

Carnegie Mellon

7

SRAM vs DRAM tradeoff
 SRAM (cache)
 Faster (L1 cache: 1 CPU cycle)
 Smaller (Kilobytes (L1) or Megabytes (L2))
 More expensive and “energy-hungry”

 DRAM (main memory)
 Relatively slower (hundreds of CPU cycles)
 Larger (Gigabytes)
 Cheaper

Carnegie Mellon

8

Locality
 Temporal locality
 Recently referenced items are likely

to be referenced again in the near future
 After accessing address X in memory, save the bytes in cache for

future access

 Spatial locality
 Items with nearby addresses tend

to be referenced close together in time
 After accessing address X, save the block of memory around X in

cache for future access

Carnegie Mellon

9

Memory Address
 64-bit on shark machines

 Block offset: b bits
 Set index: s bits
 Tag Bits: (Address Size – b – s)

Carnegie Mellon

10

Cache

 A cache is a set of 2^s cache sets

 A cache set is a set of E cache lines
 E is called associativity
 If E=1, it is called “direct-mapped”

 Each cache line stores a block
 Each block has B = 2^b bytes

 Total Capacity = S*B*E

Carnegie Mellon

11

Visual Cache Terminology
E lines per set

S = 2s sets

0 1 2 B-1tagv

valid bit
B = 2b bytes per cache block (the data)

t bits s bits b bits
Address of word:

tag set
index

block
offset

data begins at this offset

Carnegie Mellon

12

General Cache Concepts

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

Smaller, faster, more expensive
memory caches a subset of
the blocks

4

4

4

10

10

10

Carnegie Mellon

13

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

Carnegie Mellon

14

General Caching Concepts:
Types of Cache Misses

 Cold (compulsory) miss
 The first access to a block has to be a miss

 Conflict miss
 Conflict misses occur when the level k cache is large enough, but multiple

data objects all map to the same level k block
 E.g., Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

 Capacity miss
 Occurs when the set of active cache blocks (working set) is larger than

the cache

Carnegie Mellon

15

Cache Lab
 Part (a) Building a cache simulator

 Part (b) Optimizing matrix transpose

Carnegie Mellon

16

Part (a) : Cache simulator
 A cache simulator is NOT a cache!
 Memory contents NOT stored
 Block offsets are NOT used – the b bits in your address don’t

matter.
 Simply count hits, misses, and evictions

 Your cache simulator needs to work for different s, b, E,
given at run time.

 Use LRU – Least Recently Used replacement policy
 Evict the least recently used block from the cache to make room

for the next block.
 Queues ? Time Stamps ?

Carnegie Mellon

17

Part (a) : Hints
 A cache is just 2D array of cache lines:
 struct cache_line cache[S][E];
 S = 2^s, is the number of sets
 E is associativity

 Each cache_line has:
 Valid bit
 Tag
 LRU counter (only if you are not using a queue)

Carnegie Mellon

18

Part (a) : getopt

getopt() automates parsing elements on the unix command
line If function declaration is missing
 Typically called in a loop to retrieve arguments
 Its return value is stored in a local variable
 When getopt() returns -1, there are no more options

To use getopt, your program must include the header file
#include <unistd.h>

If not running on the shark machines then you will need
#include <getopt.h>.
 Better Advice: Run on Shark Machines !

Carnegie Mellon

19

Part (a) : getopt
 A switch statement is used on the local variable holding
the return value from getopt()
 Each command line input case can be taken care of separately
 “optarg” is an important variable – it will point to the value of the

option argument

 Think about how to handle invalid inputs

 For more information,
 look at man 3 getopt
 http://www.gnu.org/software/libc/manual/html_node/Getopt.ht

ml

Carnegie Mellon

20

Part (a) : getopt Example
int main(int argc, char** argv){

int opt,x,y;
/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:y:"))){

/* determine which argument it’s processing */
switch(opt) {

case 'x':
x = atoi(optarg);
break;

case ‘y':
y = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

 Suppose the program executable was called “foo”.
Then we would call “./foo -x 1 –y 3“ to pass the value 1
to variable x and 3 to y.

Carnegie Mellon

21

Part (a) : fscanf
The fscanf() function is just like scanf() except it can specify
a stream to read from (scanf always reads from stdin)
 parameters:

 A stream pointer
 format string with information on how to parse the file
 the rest are pointers to variables to store the parsed data

 You typically want to use this function in a loop. It returns -1 when
it hits EOF or if the data doesn’t match the format string

 For more information,
 man fscanf
 http://crasseux.com/books/ctutorial/fscanf.html

 fscanf will be useful in reading lines from the trace files.
 L 10,1
 M 20,1

Carnegie Mellon

22

Part (a) : fscanf example
FILE * pFile; //pointer to FILE object

pFile = fopen ("tracefile.txt",“r"); //open file for reading

char identifier;
unsigned address;
int size;
// Reading lines like " M 20,1" or "L 19,3"

while(fscanf(pFile,“ %c %x,%d”, &identifier, &address, &size)>0)
{

// Do stuff
}

fclose(pFile); //remember to close file when done

Carnegie Mellon

23

Part (a) : Malloc/free
 Use malloc to allocate memory on the heap

 Always free what you malloc, otherwise may
get memory leak
 some_pointer_you_malloced = malloc(sizeof(int));
 Free(some_pointer_you_malloced);

 Don’t free memory you didn’t allocate

Carnegie Mellon

24

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part (b) Efficient Matrix Transpose

 Matrix Transpose (A -> B)
Matrix A Matrix B

 How do we optimize this operation using the
cache?

Carnegie Mellon

25

Part (b) : Efficient Matrix Transpose
 Suppose Block size is 8 bytes ?

 Access A[0][0] cache miss Should we handle 3 & 4
 Access B[0][0] cache miss next or 5 & 6 ?
 Access A[0][1] cache hit
 Access B[1][0] cache miss

Carnegie Mellon

26

Part (b) : Blocking

 Blocking: divide matrix into sub-matrices.

 Size of sub-matrix depends on cache block size,
cache size, input matrix size.

 Try different sub-matrix sizes.

Carnegie Mellon

27

Example: Matrix Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

}

Carnegie Mellon

28

Cache Miss Analysis
 Assume:
 Matrix elements are doubles
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)

 First iteration:
 n/8 + n = 9n/8 misses

 Afterwards in cache:
(schematic)

*=

n

*=
8 wide

Carnegie Mellon

29

Cache Miss Analysis
 Assume:
 Matrix elements are doubles
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)

 Second iteration:
 Again:

n/8 + n = 9n/8 misses

 Total misses:
 9n/8 * n2 = (9/8) * n3

n

*=
8 wide

Carnegie Mellon

30

Blocked Matrix Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)

for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */

for (i1 = i; i1 < i+B; i++)
for (j1 = j; j1 < j+B; j++)

for (k1 = k; k1 < k+B; k++)
c[i1*n+j1] += a[i1*n + k1]*b[k1*n + j1];

}

a b

i1

j1

*
c

=
c

+

Block size B x B

Carnegie Mellon

31

Cache Miss Analysis
 Assume:
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)
 Three blocks fit into cache: 3B2 < C

 First (block) iteration:
 B2/8 misses for each block
 2n/B * B2/8 = nB/4

(omitting matrix c)

 Afterwards in cache
(schematic)

*=

*=

Block size B x B

n/B blocks

Carnegie Mellon

32

Cache Miss Analysis
 Assume:
 Cache block = 8 doubles
 Cache size C << n (much smaller than n)
 Three blocks fit into cache: 3B2 < C

 Second (block) iteration:
 Same as first iteration
 2n/B * B2/8 = nB/4

 Total misses:
 nB/4 * (n/B)2 = n3/(4B)

*=

Block size B x B

n/B blocks

Carnegie Mellon

33

Part(b) : Blocking Summary
 No blocking: (9/8) * n3

 Blocking: 1/(4B) * n3

 Suggest largest possible block size B, but limit 3B2 < C!

 Reason for dramatic difference:
 Matrix multiplication has inherent temporal locality:

 Input data: 3n2, computation 2n3

 Every array elements used O(n) times!
 But program has to be written properly

 For a detailed discussion of blocking:
 http://csapp.cs.cmu.edu/public/waside.html

Carnegie Mellon

34

Part (b) : Specs

 Cache:
 You get 1 kilobytes of cache
 Directly mapped (E=1)
 Block size is 32 bytes (b=5)
 There are 32 sets (s=5)

 Test Matrices:
 32 by 32
 64 by 64
 61 by 67

Carnegie Mellon

35

Part (b)

 Things you’ll need to know:
 Warnings are errors
 Header files
 Eviction policies in the cache

Carnegie Mellon

36

Warnings are Errors
 Strict compilation flags

 Reasons:
 Avoid potential errors that are hard to debug
 Learn good habits from the beginning

 Add “-Werror” to your compilation flags

Carnegie Mellon

37

Missing Header Files
 Remember to include files that we will be using functions

from

 If function declaration is missing
 Find corresponding header files
 Use: man <function-name>

 Live example
 man 3 getopt

Carnegie Mellon

38

Eviction policies of Cache
 The first row of Matrix A evicts the first row of Matrix B
 Caches are memory aligned.
 Matrix A and B are stored in memory at addresses such that both

the first elements align to the same place in cache!
 Diagonal elements evict each other.

 Matrices are stored in memory in a row major order.
 If the entire matrix can’t fit in the cache, then after the cache is full

with all the elements it can load. The next elements will evict the
existing elements of the cache.

 Example:- 4x4 Matrix of integers and a 32 byte cache.
 The third row will evict the first row!

Carnegie Mellon

39

Style
 Read the style guideline
 But I already read it!
 Good, read it again.

 Start forming good habits now!

Carnegie Mellon

40

Questions?

	Cache Lab Implementation and Blocking
	Welcome to the World of Pointers !
	Outline
	Class Schedule
	Memory Hierarchy
	Memory Hierarchy
	SRAM vs DRAM tradeoff
	Locality
	Memory Address
	Cache
	Visual Cache Terminology
	General Cache Concepts
	General Cache Concepts: Miss
	General Caching Concepts: �Types of Cache Misses
	Cache Lab
	Part (a) : Cache simulator
	Part (a) : Hints
	Part (a) : getopt
	Part (a) : getopt
	Part (a) : getopt Example
	Part (a) : fscanf
	Part (a) : fscanf example
	Part (a) : Malloc/free
	Part (b) Efficient Matrix Transpose
	Part (b) : Efficient Matrix Transpose
	Part (b) : Blocking	
	Example: Matrix Multiplication
	Cache Miss Analysis
	Cache Miss Analysis
	Blocked Matrix Multiplication
	Cache Miss Analysis
	Cache Miss Analysis
	Part(b) : Blocking Summary
	Part (b) : Specs
	Part (b)
	Warnings are Errors
	Missing Header Files
	Eviction policies of Cache
	Style
	Questions?

