Exam #2 Review

sseshadr



Agenda

 Administrative things
— Exam tomorrow, should’ve been studying
— Proxy lab out tomorrow

— You’'re probably done with malloc.
Congratulations!

e Exam Review

e Brief intro to proxy lab



Studying

e Whatto do

— Look at the 213 lecture schedule and read lectures

— Read the book

— Do the past exams

— Understand the labs
e Lectures?

— “Memory Hierarchy” to “Dynamic Memory Allocation”
e Book?

— The readings next to the lectures on the schedule



[Subset of] Exam Topics

* Physical Memory
— SRAM/DRAM? SSD? Volatile vs. non-volatile? Bus?
— Disks (calculating capacity, mem. access time)
— Locality (temporal, spatial)
— Cache memories

e Terms: types of misses, write-{through/back/allocate},
blocking, L1, L2, ...

e Given S E B & memory accesses, calculate
hits/misses/evictions



[Subset of] Exam Topics

e Linking
— Types of ELF files (.0, .so, and the “a.out” file)
— Static libraries (.a “archive files”)
— What goes in an ELF?

— Symbol resolution (strong/wealk,
global/external/local?)

— static keyword

— The 1d command? What is dynamic linking
(dlopen)?

— Types of interpositioning



[Subset of] Exam Topics

e ECF and Processes
— What is ECF and “when can it happen”

— Kernel code vs. user code, context switching at a high
level

— Synchronous ECF (traps, faults, aborts) vs.
asynchronous ECF (interrupts)

— SIGNALS and HANDLERS (a lot to know here....)

 Non-queuing, signal system calls, defaults, deferring

 Here is some code with signals and handlers and...
— It’s trying to do X, but it doesn’t. What’s wrong with it?
— What all could it print output? (Gets worse with sys io)




[Subset of] Exam Topics

e ECF and Processes
— Types of processes, what is reaping?
— What is a process group?
— What is async-signal-safety?
— fork, exec, wait/waitpid
e Fork COPIES and ISOLATES memory
 Exec REPLACES memory

— Process lab concepts
e SYNCHRONIZATION

— Non-local jumps
e How do you use sigsetjmp, siglongjmp? Stack dangers?




[Subset of] Exam Topics

e |/O
— open/close/read/write, wrappers, RIO, standard 10
e When do you use what?

— File descriptor table, initialized with 0, 1, 2
— File metadata

— File sharing and redirection
* Interaction with fork (refcnt, file position)
e dup and dup?2



[Subset of] Exam Topics

e Virtual Memory (a lot to know here...)
— TRANSLATIONS
— Address anatomy
— VM system design
— TLB
— Page table & PTEs
— mmap
— Page faults
— Special registers
— COW and Demand Paging (ZFOD)?




[Subset of] Exam Topics

e Virtual Memory

— Diagrams...



Page-Directory Entry (4-KByte Page Table)
31 1211 9876543210

Page-Table Base Address Avail |G|BlofA|ciw|/ /P
D|T|s|W

Available for system programmer's use —] |
Global page (Ignored)

Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Page-Table Entry (4-KByte Page)
31 1211 9876543210
P PIPIUIR

Page Base Address Avail |G|A|D|A|ICIW|/|/|P
T DIT|S|W

Available for system programmer’s use J I
Global Page

Page Table Attribute Index
Dirty
Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages




Linear Address

31 22 21 12 11 0
Directory Table Offset
/
/12 4-KByte Page

/10 A10  Page Table —»|Physical Address

Page Directory

—» Page-Table Entry 7?
—» Directory Entryh >
-

A 30 1024 PDE * 1024 PTE = 2°° Pages

CR3 (PNRR)

*32 bits aligned onto a 4-KByte boundary.

Figure 3-12. Linear Address Translation (4-KByte Pages)




[Subset of] Exam Topics

e Dynamic Memory Allocation
— malloc/calloc/realloc/free/sbrk
— Types of fragmentation
— Ways to coalesce

— Implementation

e Types of lists (pros and cons)
e First-fit/best-fit? Address-ordered vs. LIFO?

— Garbage collection
— |dentifying memory bugs



[Subset of] Exam Topics

 Lab & Recitation Topics

— Can you
e Simulate a cache?
e Simulate calls to malloc/free?
e Draw process trees?

— Macros
— Pointer declarations



one.ixt [ abe
two.ixt || nidoking
three.txt || conflageration

You are also presented with the main () function of three small programs (header includes omitted), each of
which uses simple and familiar functions that perform file /o operations. For each program, determine what
will be printed on stdout based on the code and the contents of the file. Assume that calls to cpen ()

succeed, and that each program is run from the directory containing the above files. (The program execution
order does not matter; the programs are ind}apendent.)

Program 1I:

void main () {
char ¢0 = "x", cl ="y’', c2 = "z';
int r, r2 = open("one.txt", O_RDONLY) ;

read(r2, &c0, 1);
r = dup(r2);
read(r2, &cl, 1);
close (r2);
read(r, &c2, 1);

printf ("$c%c%c", <0, <1, <c2);

output to stdout from Program 1: abc




one.ixt || abe
two.ixt || nidoking
three.ixt || conflageration

Program 2:

void main () {
char ¢0 = 'x", ¢l = "y’', c2 = "z";
char scrap(4];
int pid, r, r2 = open("two.txt", O_RDONLY);
r = dup(r2);

if (! (pid = fork())) {
read(r, &c0, 1);
close(r2);
r2 = open("two.txt", O_RDONLY);
read(r2, &scrap, 4);
} else {
waitpid(pid, NULL, 0);
read(r, &cl, 1);
read(r2, &c2, 1);
}

printf ("%c%c%c", <0, <1, <2);
}

output to stdout from Program 2: nyzxid




one.ixt || abe

two.ixt || nidoking

three.ixt || conflageration

Program 3:

void main () {
char c[3] = {'x’", 'yv', "z"};
int r, r2, r3;

r = open("three.txt", O_RDONLY);

r2 = open("three.txt", O_RDWR);
dup2(l; r3);
dup2 (r2, 1);

read(r, &c[0], 1);
printf ("elephant");
fflush (stdout) ;
read(r, &c[1], 1);
read(r2, &cl2], 1);
write (r3, &c[0], 3);

printf ("$c%ckc", <[0], <[1]1, <[2]);

Pretend r3 was initialized to
some nice value (even 0 works)

output to stdout from Program 3:

clr




Questions?



