Malloc Recitation

By sseshadr

Agenda

Macros in C

Pointer declarations

Casting and Pointer Arithmetic
Malloc

Macros

Macros

* Runtime, compile-time, or pre-compile time?
* Constant:

— #define NUM ENTRIES 100

— OK N
* Macro

— #define twice(x) 2*x
* Not OK
* twice(x+1) becomes 2*x+1
— #define twice (x) (2* (x))
* OK
— Use lots of parenthesis, it’s a naive search-and-replace!

Macros

* Why macros?

— “Faster” than function calls
* Why?
— For malloc

* Quick access to header information (payload size, valid)

* What's the keyword inline do?

— At compile-time replaces “function calls” with
code

Pointer declarations

C operators (K&R p. 53)

Operators

0[]

Il
+
Il
|
I

>*
Il
~
I
o\°
Il
[og]
Il
>
Il

&

(type)

<<=

sizeof

>>=

Associativity
left to right
right to left

left
left
left
left
left
left
left
left
left
left

to
to
to
to
to
to
to
to
to
to

right
right
right
right
right
right
right
right
right
right

right to left
right to left
left to right

Note: Unary +, —, and * have higher precedence than binary forms

Review of C Pointer Declarations
(K&R section 5.12)

int *p p is a pointer to int

int *p[13] p is an array[13] of pointer to int

int *(p[131) p is an array[13] of pointer to int

int **p p is a pointer to a pointer to an int

int (*p) [13] p is a pointer to an array[13] of int

int *f () f is a function returning a pointer to int
int (*f) () f is a pointer to a function returning int
int (*(*£())[13]) () fis a function returning ptr to an array[13]

of pointers to functions returning int

(* (*x[31) ()) [5] x is an array[3] of pointers to functions
returning pointers to array[5] of ints

int

Pointer casting, arithmetic, and
dereferencing

Pointer casting

e Separate from non-pointer casting
— float to int, int to float
— <struct_a> to <struct_b>
* No! gcc error.
e Cast from
— <type_a> * to <type b>*
— <type_a> * to integer/ unsigned int
— integer/ unsigned int to <type a> *

Pointer casting

 What actually happens in a pointer cast?

— Nothing! It’s just an assignment. Remember all
pointers are the same size.

— The magic happens in dereferencing and
arithmetic

Pointer arithmetic

* The expressionptr + a doesn’t always
evaluate into the arithmetic sum of the two

* Consider:
<type a> * polnter = ..;
(void *) pointer2 = (void *) (polnter + a);

e Think about it as

— leal (pointer, a, sizeof(type a)), pointer2;

Pointer arithmetic

int * ptr = (int *)0x12341234;
int * ptr2 = ptr + 1;

char * ptr = (char *)0x12341234;
char * ptr2 = ptr + 1;

int * ptr = (int *)0x12341234;
int * ptr2 = ((int *) (((char *) ptr) + 1));
volid * ptr = (char *)0x12341234;

vold * ptr2 = ptr + 1;

volid * ptr = (int *)0x12341234;
vold * ptr2 = ptr + 1;

Pointer arithmetic

int * ptr = (int *)0x12341234;
int * ptr2 = ptr + 1; //ptr2 is 0x12341238

char * ptr = (char *)0x12341234;
char * ptr2 = ptr + 1; //ptr2 is 0x12341235

int * ptr = (int *)0x12341234;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341235

vold * ptr = (char *)0x12341234;
void * ptr2 = ptr + 1; //ptr2 is 0x12341235

vold * ptr = (int *)0x12341234;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341235

More pointer arithmetic

int ** ptr = (int **)0x12341234;
int * ptr2 = (int *) (ptr + 1);
char ** ptr = (char **)0x12341234;
short * ptr2 = (short *) (ptr + 1);
int * ptr = (int *)0x12341234;

vold * ptr2 = &ptr + 1;

int * ptr = (int *)0x12341234;
void * ptr2 = ((void *) (*ptr + 1)),

This is on a 64-bit machine!

More pointer arithmetic

int ** ptr = (int **)0x12341234;

int * ptr2 = (int *) (ptr + 1); //ptr2 = 0x1234123c
char ** ptr = (char **)0x12341234;

short * ptr2 = (short *) (ptr + 1);

//ptr2 = 0x1234123c

int * ptr = (int *)0x12341234;

void * ptr2 = &ptr + 1; //ptr2 = 27

//ptr2 is actually 8 bytes higher than the address
of the wvariable ptr

int * ptr = (int *)0x12341234;

void * ptr2 = ((void *) (*ptr + 1)); //ptr2 = 22
//ptr2 is just one higher than the value at
0x12341234 (so probably segfault)

Pointer dereferencing

 Basics

— |t must be a POINTER type (or cast to one) at the
time of dereference

— Cannot dereference (void *)

— The result must get assigned into the right
datatype (or cast into it)

Pointer dereferencing

 What gets “returned?”

int * ptrl = malloc(100);
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(1nt) *((char *) ptrl);

int val?2

What are vall and val2?

Pointer dereferencing

 What gets “returned?”

int * ptrl = malloc(sizeof (int));
*ptrl = Oxdeadbeef;

*ptrl;
(1nt) *((char *) ptrl);

int vall

int val?

// vall = Oxdeadbeef;
// wval?2 = Oxffffffef;
What happened??

Malloc

Malloc basics

 What is dynamic memory allocation?

* Terms you will need to know
— malloc / calloc / realloc
— free
— sbrk
— payload
— fragmentation (internal vs. external)

— coalescing
e Bi-directional
* Immediate vs. Deferred

Carnegie Mellon

Allocation Example

pl = malloc(4)

P2 = malloc(5)

p3 = malloc(6)

free (p2)

malloc(2)

p4

Fragmentation

* |Internal fragmentation
— Result of payload being smaller than block size.

— vold * ml = malloc(3); void * ml = malloc (3);

—ml,m2 both have to be aligned to 8 bytes...

e External fragmentation

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc (4)

P2 = malloc(5)

p3 = malloc(6)

free (p2)

pd = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests

® Thus, difficult to measure

Implementation Hurdles

How do we know where the chunks are?
How do we know how big the chunks are?
How do we know which chunks are free?

Remember: can’t buffer calls to malloc and free...
must deal with them real-time.

Remember: calls to £ ree only takes a pointer,
not a pointer and a size.

Solution: Need a data structure to store
information on the “chunks”

— Where do | keep this data structure?

The data structure

Requirements:

— The data structure needs to tell us where the chunks
are, how big they are, and whether they’re free

— We need to be able to CHANGE the data structure
during calls to malloc and free

— We need to be able to find the next free chunk that is
“a good fit for” a given payload
— We need to be able to quickly mark a chunk as free/
allocated
— We need to be able to detect when we’re out of
chunks.
e What do we do when we’re out of chunks?

The data structure

e |t would be convenient if it worked like:

malloc struct malloc data structure;

ptr = malloc (100, &malloc data structure);

free (ptr, &malloc data structure);

* |nstead all we have is the memory we’re giving
out.

— All of it doesn’t have to be payload! We can use
some of that for our data structure.

The data structure

* The data structure IS your memory!

* A start:
— <h1> <pl1> <h2> <pl2> <h3> <pl3>
— What goes in the header?
e That’s your job!

— Lets say somebody calls free(p2), how can |
coalesce?

* Maybe you need a footer? Maybe not?

The data structure

* Common types
— Implicit List
* Root -> chunkl -> chunk2 -> chunk3 -> ...
— Explicit List
* Root -> free chunk 1 -> free chunk 2 -> free chunk 3 -> ...
— Segregated List

* Small-malloc root -> free small chunk 1 -> free small chunk 2 -> ...

e Medium-malloc root -> free medium chunk 1 -> ...

e Large-malloc root -> free large chunkl -> ...

Design considerations

* | found a chunk that fits the necessary
payload... should | look for a better fit or not?

e Splitting a free block:

volid* ptr = malloc (200);

free (ptr);
ptr = malloc(50); //use same space, then “mark” remaining bytes
as free

volid* ptr = malloc (200);

free (ptr);
ptr = malloc(192);//use same space, then “mark” remaining bytes
as free??

Design Considerations

* Free blocks: address-ordered or LIFO
— What’s the difference?
— Pros and cons?

* Implicit / Explicit / or Seg?
— Implicit won’t get you very far... too slow.

— Explicit is a good place to start, and can be turned
into a seg-list.

— Seg-list: what are the thresholds?

