Recitation

By yzhuang, sseshadr

Agenda

* Debugging practices
— GDB
— Valgrind
— Strace
* Errors and Wrappers
— System call return values and wrappers
— Uninitialization
—malloc () related bugs
* System IO

Debugging Practices

General Debugging

e printfs are a good start, but won’t solve
everything
* Remember printfs CHANGE your code

— And how it’s compiled
— And how it runs
* Especially for races
* Alot of the debugging tools should be used
with the —g compiler flag

GDB

* From bomblab / buflab
 You WILL need it for malloc
e Demo?

Valgrind

Memory related issues
Lots of options

man valgrind
valgrind —--leak-check=full

Demo?

./a.out

strace

* From the man page

— “In the simplest case strace runs the specified
command until it exits. It intercepts and records
the system calls which are called by a process
and the signals which are received by a process.
The name of each system call, its arguments and
its return value are printed on standard error or to
the file specified with the -o option.”

* Cool for debugging!

Errors and Wrappers

System Call Error Handling

* Always handle errors for every system call
— #include <errno.h>
— Failed system calls almost always return -1
— Global integer error number: errno
— Getting error description: strerror(errno)

 We deduct style points for not handling
system call errors

Wrappers

* |f a system call is frequently used, create a
wrapper for it. For example:

pid_t Fork(void){
pid_t pid;
if ((pid = fork()) < 0){ //error handling }
return pid;

}

* Proclab: always handle errors

— You can choose whether to use wrappers

malloc

#include <stdlib.h>
void *malloc(size_t size);
Allocates size bytes of memory

A pointer is returned
Returned memory uninitialized!!

p=(struct cacheline*) malloc(sizeof(cacheline));
P->valid = 7777

— Cachelab: using uninitialized valid bit (very bad)!

calloc

* With malloc
— Either initialize
— Or use calloc

e void * calloc (size_t num, size_t size);
— Allocate num * size bytes of memory

— Initialized to O

e Caveat: what if num * size causes an
overflow? Check before calling calloc.

free

* Free memory allocated by malloc/calloc

* Common mistakes:
— Freeing memory already freed
— Freeing memory not allocated
— Writing to memory already freed
— Index-out-of-bound accesses of allocated array

— Not freeing allocated memory

/0

System 1/O Basics

* Four basic operations:
— open
—close
— read
—wrilte
 What'’s a file descriptor?

— Returned by open.
— int fd = open(“/path/to/file”, O RDONLY) ;

* fd is some positive value or -1 to denote error

System 1/O Basics

* Every process starts with 3 open file
descriptors

-0 - STDIN
-1 - STDOUT
-2 - STDERR

* Canl close these file descriptors?
— Yes!

— But you shouldn’t... this next example is just for
illustrative purposes

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char ** argv) {

int fd = atoi(argv(l]);
argc = argc; /* Keep GCC Happy */

fprintf (stdout, "STDOUT:close (%d) = $d\n", fd,close(fd));
fprintf (stderr, "ERROR:close(%d) = %d\n",fd,close(fd)):;

return 1;

What are the outputs when run with. /a.out 0 ,./a.out 1 ,and./a.out 27?

Sample Code

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char ** argv) {

int fd = atoi(argv[1l]);
argc = argc; /* Keep GCC Happy */

fprintf (stdout, "STDOUT:close (%d)
fprintf (stderr, "STDERR:close (%d)

return 1;
}

>> ,/a.out 0
STDOUT :close (0)
STDERR:close (0) = -1

I
o

>> . /a.out 1
STDERR:close(1l) = -1

>> . /a.out 2
STDOUT :close (2)

I
o

%$d\n", fd, close (fd)) ;
$d\n", fd, close (fd)) ;

Why -1 on the second time??

Why no STDOUT output? And why -1
for close return value?

Why no STDERR output? And why O
for close return value this time?

Some Real Stuff

From Lecture:

Descriptor table
[one table per process]

stdin fdoO
stdout fd1
stderr fd2
fd 3
fd 4

--_._-
I

-\--
o 8

\\\\\—

Open file table
[shared by all processes]

File A (terminal)

-

File pos

refent=1

File B (disk)

]

File pos

refent=1

v-node table
[shared by all processes]

File access

File size

File type

File access

File size

File type

Info in
stat
struct

Some Real Stuff

From Lecture:

Descriptor table
[one table per process]

stdin fdoO
stdout fd1]
stderr fd2

fd 3

fd 4 e

CALLTO
fork ()

i R
P

~—_

Open file table
[shared by all processes]

File A (terminal)

-

File pos

refent=1

File B (disk)

File pos

refent=1

v-node table
[shared by all processes]

File access

File size

File type

File access

File size

File type

Info in
stat
struct

Some Real Stuff

From Lecture:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent File A (terminal) -
fdof | — S File access
Ig ; — File pos File size
fd 3 refent=2 File type
fda| —J| - .
child T~ _FileB(disk)
" File access
fdo /| =23
fd1 4 File pos File size
;g ; refcnt=2 File fYPe
fd 4 -

Dup

e Whatis file redirection?

— Redirection vs. Pipes

» Redirection has one “input” of a file, pipes can be between
tasks

* Ex: cat < filename

e Ex: find . | cat
— What is dup?2?

* It switches which file a file descriptor is pointing to!
— What is dup?

* |t initializes another file descriptor to point to an already
existing file!

Some Real Stuff

From Lecture:

Descriptor table
[one table per process]

stdin fdoO
stdout fd1
stderr fd2
fd 3
fd 4

--_._-
I

-\--
o 8

\\\\\—

Open file table
[shared by all processes]

File A (terminal)

-

File pos

refent=1

File B (disk)

]

File pos

refent=1

v-node table
[shared by all processes]

File access

File size

File type

File access

File size

File type

Info in
stat
struct

Some Real Stuff

From Lecture:

Descriptor table
[one table per process]

stdin fdo| | = __—
stdout fd1 —
stderr fd2
fd 3
fd 4 e
5\\\\\%
\

Open file table
[shared by all processes]

File A (terminal)

-

File pos

refent=1

CALLTO
dup2(4,1)

File B (disk)

File pos

refent=1

v-node table
[shared by all processes]

File access

File size

File type

File access

File size

File type

Info in
stat
struct

From Lecture
Descriptor table
[one table per process]

stdin
stdout
stderr

fd 0
fd1
fd 2
fd 3
fd 4

\

Dup

Open file table

[shared by all processes]

File A

File pos

refcent=0

File B

File pos

refent=2

————

v-node table

[shared by all processes]

File access

File size
File type

File access

File size
File type

Dup

 Sowhatis dup, and what is dup2?

— 1nt fdl = open(..);
int f£fd2 = dup(fdl);

— 1nt fdl open (...) 5
int f£d2; dup2(fdl, £d2);

 Are these the same??
— NO!
— The first is OK, the second uses an uninitialized variable!

Remember, it’s not
dup2 (£fdl, &fd2);

File writing example

* Questions

— What are all of the possible contents of the file
after running this code??

— What is wrong with the style of this code?

— How would you close these file descriptors?

#include <stdio.h>
#include <unistd.h>

int main ()

{
int fdl, fd2, fd3, parent = 0;
char *fname = "filename";

fdl = open(fname, O CREAT|O TRUNC|O RDWR, S IRUSR|S IWUSR);
write (£fdl, "A", 1);

fd3 = open(fname, O APPEND|O WRONLY, O0);
write (£d3, "BBB", 3);

1if ((parent = fork()))
fd2 = dup(fdl);
else
fd2 = £d4d3;

write (£d2, "C", 1);
write (£d3, "D", 1);

if (parent) waitpid(-1, NULL, O);

return 0O;

File writing example

e Answers

— Possible outputs:
e ACBBDCD
e ACBBCDD

— What is wrong with the style of this code?

* Didn’t check error codes, didn’t close anything, no
comments.

— How would you close these file descriptors?

e fd2 sometimes needs close () ’d, sometimes doesn’t!
 So:don’tdo both £fd2 = fd3;and fd2 = dup (fl);

Practice!l

* Tons of practice available in past exam #2’s

* Very likely to be an I/O question on the next
test!

