Exam #1 Review

By sseshadr

Agenda

e Reminders

— Test tomorrow!
e One 8.5 x 11 sheet, two sides

— Pick up your datalabs in OH
— Cachelab comes out tomorrow

e Review

e Questions

[Subset of] What to Know

e Labs!
— We try to reward people who did them well
e Assembly
— Basi)c?s (what does cmp do, source vs. dest, operand order for add,
etc.):

— What registers are special? Caller save vs. callee save?

— Switch statements and jump tables?

— Loops?

— You should be able to trace through assembly. Practice it.

— You should be able to write small amounts of assembly (like buflab).

 Data Representation
— Two’s compliment
— Floating point
— Endianness

[Subset of] What to Know

Stack

— What’s different in 32- vs. 64-bit

— You should know parameters, ebp values, return address, etc.
Larger Structures

— Structs and Unions
e What’s the difference?
* Padding and alignment

— Arrays
* Multi-dimensional access
Control
— Loops in assembly?
— Recursion?
Memory
— Heap vs. Stack
— What s the L1 Cache?

Floating Point Review

e Basics
— Sign, Mantissa, Exponent
— Round to even
— Bias
— Infinity, +- zero, NaN
— Normalized vs. Denormalized

1. Format A

¢ There are & = 3 exponent bits. The exponent bias is 3.

e There are n = 5 fraction bits.
2. Format B
e There are & = 5 exponent bits. The exponent bias is 15.

e There are n = 3 fraction bits.

Fill in the blanks in the table below by converting the given values in each format to the closest possible
value in the other format. Express values as whole numbers (e.g., 17) or as fractions (e.g., 17/64). If
necessary, you should apply the round-to-even rounding rule.

Format A Format B
Bits Value Bits Value
011 00000 1 01111 000 1
110 11100 15 10010 111 15
100 10101 53 10000 101 13/4
111 00000 Infinity 10100 110 56
000 00001 1/128 01000 000 1/128

Round-to-even examples

e Represent 25/64 with 4 exponent bits, 3 fraction bits.
Biasis 241 —-1=7
— 0101 100: Rounded DOWN to value 3/8

e Represent 27/64 with 4 exponent bits, 3 fraction bits
— 0101 110: Rounded UP to value 7/16

e Represent 51/128 with 4 exponent bits, 3 fraction bits
— 0101 101: Rounded UP to value 13/32
— Didn’t use round-to-even on this... it wasn’t a “tie”

Array Access

e Start with the C code

e Then look at the assembly
— Work backwards!

e Easiest to just do an example

int arravl [H] [J];
int arravz [J] [H];

int copy array(int x, int y) {

arravz [y] [x] = arravl [x] [v];
*(array2 + yH + x

}
Remember though, multiply the offset by sizeof(int)

*(arrayl + xJ +y)
return 1;

Suppose the above C code generates the following x86-64 assembly code:

On entry:

$edi = x
$eai = vy
#

Copy_array:
moveslg %edi, $rdi rax ==
movelg %esi,%rsi / rdx == 3y
mowvg trdi, %rax / rax == 32x
leaq f%rsi,%rsiiflizﬁzgg,,////,//”? rax == 31x
salg 45, srax ’////////,,//”’/////?

. rdx == 6y+x
aubg ¥rdi, %rax / rax == 31x + y
leaq f%rdil%rdK;il;,ﬁfgi”///////////?
addg srel, srax > rax must have value Jx +y
mowvl arravl(,%rax,4), %eax
mowvl $eax, arravz(,%rdx, 4)
movl §1, %eax I rdx must have value Hy +x

ret

Structs

e What is a union again?
* How big are things?
— |f you can’t remember, cheat sheet.

— int, char, pointer (you should know these by now)
— float, double, short

e Alignment rules

— |f you can’t remember, cheat sheet.

atruct {
char *a;
short b;
double o;
char d;
float e;
char f;
long g;
volid *h;

} foo;

A. Show how the struct above would appear on a 32-bit Windows machine (primitives of size £ are k-
byte aligned). Label the bytes that belong to the various fields with their names and clearly mark the
end of the struct. Use hatch marks to indicate bytes that are allocated in the struct but are not used.

+——+——+——+——+[—+ it ket Dt Dbl Sl el el el et Lt

AAda DDXXICCCCCCCC!

e e i T e e e e e e i Sl il Sl Sl it 2
Are we done???

G A ks St edal ety e it et Dl Dt s Sl Salut

idxxxeeee TxXxxigggqg o

il Rl el b et el Dl kel S ll et Sl Lt -

hhhhixoooa T 77110

it At bl LAl LRl e ll Rl Dl Dt St St St bl bl Ll Dl

