Buflab

Recitation - 09/20/2010
By sseshadr

Agenda

Reminders

— Bomblab should be finished up
— Exam 1 is on Tuesday 09/28/2010

Stack Discipline

Buflab
— One of you will get lucky

Datalab Handouts
— Overall style OK. See comments on ink

Stack?

e What is the stack?
— It’s NOT

e The memory regions returned by malloc()

 The memory where your program itself is loaded

e Where the bits for general purpose register are stored
e Where the return value of a function is stored

— [t IS
 Where you can often find a function’s local variables
e How parameters are passed in 32-bit x86
e Where the return ADDRESS is stored

e A highly structured (easily corruptible) data structure
essential to the execution of your code!

Virtual Address Space

not drawn to scale

FF
Stack

l

Heap
Data
Text

08
00

8MB

The stack starts very close to
OXFFFFFFFF (for 32-bit) and grows DOWN

Stack Discipline

 Each function has a stack frame
— Local variables
— Saved registers
— Anything that function wants to put in its stack

 Functions CALL other functions
— Arguments
— Return address
— Base pointer

Stack Discipline

Arguments

Return address

Stack Discipline

What happens when ret is executed?

— Pop the stack and “Jmp” to that address

— InJava, think: eip = stack.pop();
Where can | find the return address of my function?
— *(ebp + 4)

How can | find the second parameter to my function?
— *(ebp + 12) == the second parameter

How can | find the return address of the function that CALLED
me?

— Remember that *ebp == old ebp

— *(*ebp + 4)

How are arguments pushed onto the stack?

— Reverse order! Stacks are LIFO

Stack Discipline

e How will the “transition stack” look like for a
function Foo which makes the function call

printf(“str = %s, num = %d”, NAMme, 16)

Stack frame for foo
0x00000010 Arguments pushed in REVERSE order
<address of name>

<address of format string in .rodata> All hard-coded strings are put into .rodata
before runtime

return address (where EIP should return Return address
in Foo after the printf call)

T00’s ebp Old base pointer

Stack frame for printf

Buflab

e It’s a hack.

— Overflow the buffer to write over the return
address

 We will go over how to solve the first phase.

e Whoever can answer this next question will
get a head start
— Only answer if you haven’t yet started buflab

X86 Review Question:

e Yeax atthe start of this has the value O0x01000000
 What will %eax have after executing this code?

mov 4(%eax), %eax - eax = *(eax+4) = 0x10203040
lea 4(%eax), %eax eax = (eax+4) = 0x10203044

OXOOFFFFFC OxDEADBEEF
0x01000000 0x01020304
0x01000004 0x10203040
0x10203040 0x1234567/8

0x10203044 OxXBEEFBABE

Buflab Demo

Pick up your datalabs!

