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m Cache memory organization and operation
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
= Hold frequently accessed blocks of main memory

m CPU looks first for data in caches (e.g., L1, L2, and L3),
then in main memory.

m Typical system structure:

CPU chip

Register file
Cache <_> ALU
memories

/1
II \ Systembus  Memory bus
“/ 0 l Mai
_ ain
Bus interface <::> bridge <:> memory
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General Cache Organization (S, E, B)

E = 2¢ lines per set
A

Cache size:
C =S x E x B data bytes

ccece
coece
S=Zssets< XXy
R RRRXm
ccece
\.
v tag 2] ... B-1
valid bit ~—

B = 2® bytes per cache block (the data)
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CaChe Read * Locate set

* Check if any line in set
has matching tag

E = 2¢ lines per set * Yes + line valid: hit
p A ~N * Locate data starting
r at offset
000

Address of word:
t bits s bits | b bits

S=Zssets< eooo W—M—M/

tag set block

index offset

0 0000000000000 OCOGEOGEOGOEOGEOSGOEOOOS OO
o0 00
\.
data begins at this offset
v tag 0112 ccc" B-1
valid bit ~——

B = 2® bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 . olil21:1als1el7 Address of int:
Y 28 tbits | 0..01 | 100

v tag 0|1)12|3]|4|5]|6]7

find set

S$=25 sets<

v tag 011|2]|3|4]|5]|6]7

Vv tag 0|112]|3]4|5]6]7
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0l11]12]|3|4]|5]|6]|7

block offset
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 011|12|3]|4}|5|6]7

block offset

int (4 Bytes) is here

No match: old line is evicted and replaced
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Direct-Mapped Cache Simulation

t=1 s=2 _b=1 M=16 byte addresses, B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

Set0 | 1 0 M[O-1]
Set1l
Set 2
set3| 1 | 0 | MI6-7]




A Higher Level Example

int

{

sum array rows (double a[16][16])

int i, j;
double sum = 0;

for (i = 0; 1 < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] []]’
return sum;

int

sum array cols(double a[16][16])

int i, j;
double sum = 0;

for (J = 0; 1 < 16; i++)
for (1 = 0; j < 16; j++)
sum += a[i] []]:
return sum;

Carnegie Mellon

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
v
“ J
'

32 B =4 doubles

blackboard

10
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | |o]1]2{3]als]6|7]| ||v] [ tag ] [0]2]2]3[4]5]6]7

v| | tag | lo]1]2]3]als]el7}| |{v] [ tag ] [o]2]2]3]a]5]6]7 find set

v| [ tag | |0]1|2]3]al5]6]7]]||v] | tag | [o]2]2[3]4]5]6]7

v| | tag | [o]1]2]3|als5]6]7]] |[v] | tag | [0o]2]2]3]4[5]6]7

1
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| | tag | [ol2{2]3]afs]6l7]| |Lv] | tag ] [0]2]2]3]4]5]6]7

block offset

12
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [ tag | [ol1[2]3]a[s5]6l7]| |[v] | tag | [o]2]2]3]4]5]6]7

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

13
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2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

1 |10 |[M[8-9]

[HEN

01 M[6-7]

Set1l

14



A Higher Level Example

int

{

sum array rows (double a[16][16])

int i, j;
double sum = 0;

for (i = 0; 1 < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i] []]’
return sum;

int

sum _array rows (double a[l1l6][16])

int i, j;
double sum = 0;

for (J = 0; 1 < 16; i++)
for (1 = 0; jJ < 16; j++)
sum += a[i] []];
return sum;

Carnegie Mellon

Ignore the variables sum, i, j

assume: cold (empty) cache,

a[0][0] goes here
7
“ J
'

32 B =4 doubles

blackboard

15



What about writes?

m Multiple copies of data exist:
= L1, L2, Main Memory, Disk

m What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes immediately to memory)

m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate

16
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Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
: : 32 KB, 8-way,
Regs Regs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

. | [d-cache]| | i-cache d-cache| |i-cache| | 256 KB, 8-way,
- Access: 11 cycles

' | | L2 unified cache L2 unified cache | | | |3 unified cache:

| i 8 MB, 16-way,

Main memory

17
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Cache Performance Metrics

m Miss Rate

" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1

= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m HitTime
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

18
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Lets think about those numbers

m Huge difference between a hit and a miss

= Could be 100k, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

19
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Writing Cache Friendly Code

m Make the common case go fast

= Focus on the inner loops of the core functions

m Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories.

20
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Today

m Performance impact of caches
= The memory mountain

21
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

" Compact way to characterize memory system performance.

22
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Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; i < elems; i += stride)
result += datal[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)

{

double cycles;

int elems = size / sizeof (int);
test (elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */

return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

23



The Memory Mountain

Q 7000 7—’-/
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Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache

256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

24
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Intel Core i7

H 32 KB L1 i-cache
The Memory Mountain e Ko LL gene
256 KB unified L2 cache
8M unified L3 cache

All caches on-chip

Read throughput (MB/s)

Slopes of
spatial
locality

25
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Intel Core i7

H 32 KB L1 i-cach
The Memory Mountain 39 KB L1 0ot

P 256 KB unified L2 cache

- 8M unified L3 cache
0 7000 7//
g | L1 All caches on-chi
< 6000 - P
> ‘i
=
< 5000 -
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£ 4000 - | ,
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& Temporal
2000 - locality
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spatial |
locality 0 - all
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nw O 0 v
= ™ =
0 — W S -
Stride (x8 bytes) n v N 0
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Today

= Rearranging loops to improve spatial locality

27
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Miss Rate Analysis for Matrix Multiply

m Assume:
" Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows
m Analysis Method:

= Look at access pattern of inner loop

-0 M

28
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Matrix Multiplication Example

Variable sum

= Description: /* ijk */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= O(N3) total operations for (J=0; Jj<n; Jj++) {

sum = 0.0; <
" N reads per source

element

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]I[Jj];
c[i] []]

" N values summed per
destination

sum,

= but may be able to
hold in register

29
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; i++4)
sum += a[0][i];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= compulsory miss rate = 4 bytes / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; 1++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!
= compulsory miss rate =1 (i.e. 100%)

30
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { ﬁ
=0.0; , ij)
s = (i, *) e

for (k=0; k<n; k++)

Inner loop:

sum += a[i] [k] * b[k][j]; A B C
c[i][3j] = sum; ‘ ‘ ‘
}
Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

3
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { * i
sum = 0.0; L;;;J . E]ii: (&H
for (k=0; k<n; k++) (i,%)
sum += a[i] [k] * b[k][j]; A B C

c[i][] = sum ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

32
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Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i, k) E(k,*)g
r = a[i] [k]; O (i,*)
B C

for (j=0; j<n; j++) A
c[i][J] += r * b[k][]]; ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

33
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Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) ({ (i,k) E(k'*)g
r = a[i] [k]; u (i,*)
B C

for (jJ=0; j<n; j++) A
c[i][j] += r * b[k][]]~ ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

34
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Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; jJj++) { (* k) * )
for (k=0; k<n; k++) { [| (k.j)

r = b[k][jl; N H
for (i=0; i<n; i++) A B C
c[i][J] += ali]l[k] * r; ‘ ‘ ‘

Column- Fixed Column-

wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

35
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Matrix Multiplication (kiji

/* kji */
for (k=0; k<n; k++) {

for (j=0; j<n; j++) { * k) *
r = b[k][j]; (I:'j)

for (i=0; i<n; i++)

Inner loop:

c[il[j] += a[il[k] * r; A‘ T c‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

36



Summary of Matrix Multiplication

for (i=0; i<n; i++) {
for (3=0; j<n; J++
sum(i 0.0:: e Uk (&Jlk)
for (k=0; k<n; k++) e 2 loads, O stores
sum += a[i] [k] * b[k][]]; ® misses/iter = 1.25
c[i] [J] = sum;
}
}
for (k=0; k<n; k++) {
for (i=0; i<n; i++) { kij (& ikj):
r = a[i] [k]; e 2 |loads, 1 store
for (j=0; Jj<n; j++) e misses/iter = 0.5
c[i] [J] += r * b[k][]];
}
}
for (3j=0; j<n; j++) {
for (k=0; k<n; k++) { jki (& kji):
r = b[k][j]; ¢ 2 loads, 1 store
ders (R HREDg o) e misses/iter = 2.0
c[i] [J] += a[i] [k] * r;
}
} 37
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Core i7 Matrix Multiply Performance

60
jki / kiji

0 kX
S
®
S 40
Q > ki
S B kjj
2 ~>ijk
8 30 _@_J'llk
c et e —+kij
= ijk / jik it
. A8 iK]
S 20 ’
o
©
& 10

kij / ikj
0

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) 2
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Today

= Using blocking to improve temporal locality

39



Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+]j] += a[i*n + k]*b[k*n + j];

[ 11

I
*

40
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)

m First iteration: r N
" n/8+n=9n/8 misses

I
*

= Afterwards in cache:
(schematic) . C —

]
*

8 wide
4
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
® Cache size C << n (much smaller than n)

n
m Second iteration: —N
= Again: )
n/8 + n = 9n/8 misses _ *
8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

42
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (1 = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i++)
for (1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl] += a[il*n + k1l]*b[kl*n + jl];

jl
o] a b o]
— * +
[ i1 [

Block size B x B

43



Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

= Cache size C << n (much smaller than n)
" Three blocks ™ fit into cache: 3B2< C

n/B blocks
m First (block) iteration: —
= B2/8 misses for each block ™ BEERRE L]
= 2n/B * B2/8 = nB/4 _ —
(omitting matrix c) - * ]
= Afterwards in cache ] T Blogksize B X B
(schematic)

]
*

44
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles

= Cache size C << n (much smaller than n)
" Three blocks ™ fit into cache: 3B2< C

] ] n/B blocks
m Second (block) iteration: —A
" Same as first iteration [ pErEs
= 2n/B * B%/8 =nB/4
- ¥
m Total misses: Block size B x B

" nB/4 * (n/B)? =n3/(4B)

45
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Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B? < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

46
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Concluding Observations

m Programmer can optimize for cache performance
= How data structures are organized
" How data are accessed
= Nested loop structure
= Blocking is a general technique

m All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform specific
= Cache sizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
= Keep working set reasonably small (temporal locality)
= Use small strides (spatial locality)

47



