
Concurrent Servers
Dec 3, 2002

Concurrent Servers
Dec 3, 2002

TopicsTopics
n Limitations of iterative servers

n Process-based concurr ent servers

n Event-based concurrent serve rs

n Threads-based concurrent serv ers

class28.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Iterative ServersIterative Servers

Iterative servers process one re quest at a time.Iterative servers process one re quest at a time.

client 1 server client 2

call connect call accept
ret connect

ret accept

call connect

call read
write

ret read
close

close
call accept

ret connect

call read

ret read

close

write

ret accept

close

– 3 – 15-213, F’02

Fundamental Flaw of Iterative ServersFundamental Flaw of Iterative Servers

Solution: use Solution: use concurrent servers concurrent servers instead.instead.
n Concurrent servers use multiple conc urrent flows to serve

multiple clients at the same time.

client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect
call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

Client 2 blocks
waiting to complete
its connection 
request until after
lunch!

Server blocks
waiting for
data from
Client 1

– 4 – 15-213, F’02

Concurrent ServersConcurrent Servers

Concurrent  servers handle multiple re quests concurrently.Concurrent  servers handle multiple re quests concurrently.
client 1 server client 2

call connect
call accept

call read

ret connect
ret accept

call connect

call fgets
forkchild 1

User goes
out to lunch

Client 1
blocks
waiting for
user to type
in data

call accept
ret connect

ret accept call fgets

writefork

call 
read

child 2

write

call read

end read
close

close

...



– 5 – 15-213, F’02

Three Basic Mechanisms for
Creating Concurrent Flows
Three Basic Mechanisms for
Creating Concurrent Flows

1. Processes1. Processes
n Kernel automatically interleaves multiple logical flows.

n Each flow has its own private address space .

2. I/O multiplexing wi th 2. I/O multiplexing wi th select()select()
n User manually interleaves multiple logical flows.

n Each flow shares the same address space.

n Popular for high-performance server de signs.

3. Threads3. Threads
n Kernel automatically interleaves multiple logical flows.

n Each flow shares the same address space.

n Hybrid of processes and I/O multiplexing!

– 6 – 15-213, F’02

Process-Based Concurrent ServerProcess-Based Concurrent Server
/* 
 * echoserverp.c - A concurrent echo server based on processes 
 * Usage: echoserverp <port>
 */
#include <ics.h>
#define BUFSIZE 1024
void echo(int connfd);
void handler(int sig);

int main(int argc, char **argv) {
  int listenfd, connfd;
  int portno;
  struct sockaddr_in clientaddr;
  int clientlen = sizeof(struct sockaddr_in);

  if (argc != 2) {
    fprintf(stderr, "usage: %s <port>\n", argv[0]);
    exit(0);
  }
  portno = atoi(argv[1]);
  listenfd = open_listenfd(portno);

– 7 – 15-213, F’02

Process-Based Concurrent Server
(cont)
Process-Based Concurrent Server
(cont)

 Signal(SIGCHLD, handler); /* parent must reap children! */

  /* main server loop */
  while (1) {
    connfd = Accept(listenfd, (struct sockaddr *) &clientaddr, 
                        &clientlen));
    if (Fork() == 0) { 
      Close(listenfd); /* child closes its listening socket */
      echo(connfd);    /* child reads and echoes input line */
      Close(connfd);   /* child is done with this client */
      exit(0);         /* child exits */
    }
    Close(connfd); /* parent must close connected socket! */
  }
}

– 8 – 15-213, F’02

Process-Based Concurrent Server
(cont)
Process-Based Concurrent Server
(cont)

/* handler - reaps children as they terminate */
void handler(int sig) {
  pid_t pid;
  int stat;
  
  while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
    ;
  return;
}



– 9 – 15-213, F’02

Implementation Issues With
Process-Based Designs
Implementation Issues With
Process-Based Designs
Server should restart Server should restart acceptaccept call if it is interrupted by call if it is interrupted by

a transfer of control to the SIGCHLD handlera transfer of control to the SIGCHLD handler
n Not necessary for systems with POSIX s ignal handling.

l Our Signal wrapper tells kernel to automatically restart
accept

n Required for portability on some older Unix systems.

Server must reap zombie childrenServer must reap zombie children
n to avoid fatal memory leak.

Server must Server must closeclose its copy of  its copy of connfdconnfd..
n Kernel keeps reference for each socket.
n After fork, refcnt(connfd) = 2.

n Connection will not be closed until refcnt(connfd)=0.

– 10 – 15-213, F’02

Pros and Cons of Process-Based
Designs
Pros and Cons of Process-Based
Designs
+ Handles multiple connections concu rrently+ Handles multiple connections concu rrently

+ Clean sharing model+ Clean sharing model
n descriptors (no)
n file tables (yes)
n global variables (no)

+ Simple and straightforward.+ Simple and straightforward.

- Additional overhead for process control.- Additional overhead for process control.

- Nontrivial to share data between proce sses.- Nontrivial to share data between proce sses.
n Requires IPC ( interprocess communication) mechanisms

FIFO’s (named pipes),  Sys tem V shared memory a nd semaphores

I/O multiplexing provides more control with lessI/O multiplexing provides more control with less
overhead...overhead...

– 11 – 15-213, F’02

Event-Based Concurrent Servers
Using I/O Multiplexing
Event-Based Concurrent Servers
Using I/O Multiplexing

Maintain a pool of connected descri ptors.Maintain a pool of connected descri ptors.

Repeat the following forever:Repeat the following forever:
n Use the Unix select function to block until:

l (a) New connection reques t arrives on the listen ing descriptor.
l (b) New data arrives on an existing connected descriptor.

n  If (a), add the new connection to the pool of connections.

n If (b), read any available data from the connection
l Close connection on EOF and remove it from the p ool.

– 12 – 15-213, F’02

The select FunctionThe select Function
select()select()  sleeps until one o r more file descriptors in the set   sleeps until one o r more file descriptors in the set readsetreadset

are ready for reading.are ready for reading.

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL, NULL);

readset
• Opaque bit vector (max FD_SETSIZE bits) that indicates membership  in

a descriptor set.
• If bit k is 1, then descriptor k is a member of  the descriptor set.

maxfdp1
• Maximum descriptor in descriptor set plus 1.
• Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership.

select()select()  returns the number of read y descriptors and sets each bit  of  returns the number of read y descriptors and sets each bit  of
readsetreadset  to indicate the ready status of its correspondi ng descriptor.to indicate the ready status of its correspondi ng descriptor.



– 13 – 15-213, F’02

Macros for Manipulating Set
Descriptors
Macros for Manipulating Set
Descriptors
void FD_ZERO(void FD_ZERO(fdfd_set *_set *fdsetfdset););

n Turn off all bits in fdset.

void FD_SET(void FD_SET(int fdint fd, , fdfd_set *_set *fdsetfdset););

n Turn on bit fd in fdset.

void FD_CLR(void FD_CLR(int fdint fd, , fdfd_set *_set *fdsetfdset););

n Turn off bit fd in fdset.

intint FD_ISSET( FD_ISSET(int fdint fd, *, *fdsetfdset););

n Is bit fd in fdset turned on?

– 14 – 15-213, F’02

select Exampleselect Example

/* 
 * main loop: wait for connection request or stdin command.
 * If connection request, then echo input line 
 * and close connection. If stdin command, then process. 
 */
 printf("server> ");
 fflush(stdout);

 while (notdone) {
    /* 
     * select: check if the user typed something to stdin or 
     * if a connection request arrived.
     */
    FD_ZERO(&readfds);          /* initialize the fd set */
    FD_SET(listenfd, &readfds); /* add socket fd */
    FD_SET(0, &readfds);        /* add stdin fd (0) */
    Select(listenfd+1, &readfds, NULL, NULL, NULL); 
    

– 15 – 15-213, F’02

select Example (cont)select Example (cont)

First we check for a pending e vent on First we check for a pending e vent on stdinstdin ..

  /* if the user has typed a command, process it */
  if (FD_ISSET(0, &readfds)) {
     fgets(buf, BUFSIZE, stdin);
     switch (buf[0]) {
     case 'c': /* print the connection count */
        printf("Received %d conn. requests so far.\n", connectcnt);
        printf("server> ");
        fflush(stdout);
        break;
     case 'q': /* terminate the server */
        notdone = 0;
        break;
     default: /* bad input */
        printf("ERROR: unknown command\n");
        printf("server> ");
        fflush(stdout);
     }
  }    

– 16 – 15-213, F’02

select Example (cont)select Example (cont)

Next we check for a pending conne ction request.Next we check for a pending conne ction request.

  /* if a connection request has arrived, process it */
  if (FD_ISSET(listenfd, &readfds)) {
     connfd = Accept(listenfd, 
                    (struct sockaddr *) &clientaddr, &clientlen);
     connectcnt++;
      
     bzero(buf, BUFSIZE);
     Rio_readn(connfd, buf, BUFSIZE);
     Rio_writen(connfd, buf, strlen(buf));
     Close(connfd);
  }
} /* while */  



– 17 – 15-213, F’02

Event-based Concurrent Echo ServerEvent-based Concurrent Echo Server

/*
 * echoservers.c - A concurrent echo server based on select
 */
#include "csapp.h"

typedef struct { /* represents a pool of connected descriptors */
    int maxfd;        /* largest descriptor in read_set */
    fd_set read_set;  /* set of all active descriptors */
    fd_set ready_set; /* subset of descriptors ready for reading  */
    int nready;       /* number of ready descriptors from select */
    int maxi;         /* highwater index into client array */
    int clientfd[FD_SETSIZE];    /* set of active descriptors */
    rio_t clientrio[FD_SETSIZE]; /* set of active read buffers */
} pool;

int byte_cnt = 0; /* counts total bytes received by server */

– 18 – 15-213, F’02

Event-based Concurrent Server (cont)Event-based Concurrent Server (cont)
int main(int argc, char **argv)
{
    int listenfd, connfd, clientlen = sizeof(struct sockaddr_in);
    struct sockaddr_in clientaddr;
    static pool pool;

    listenfd = Open_listenfd(argv[1]);
    init_pool(listenfd, &pool);

    while (1) {
        pool.ready_set = pool.read_set;
        pool.nready = Select(pool.maxfd+1, &pool.ready_set,
                             NULL, NULL, NULL);

        if (FD_ISSET(listenfd, &pool.ready_set)) {
            connfd = Accept(listenfd, (SA *)&clientaddr,&clientlen);
            add_client(connfd, &pool);
        }
        check_clients(&pool);
    }
}

– 19 – 15-213, F’02

Event-based Concurrent Server (cont)Event-based Concurrent Server (cont)

/* initialize the descriptor pool */
void init_pool(int listenfd, pool *p)
{
    /* Initially, there are no connected descriptors */
    int i;
    p->maxi = -1;
    for (i=0; i< FD_SETSIZE; i++)
        p->clientfd[i] = -1;

    /* Initially, listenfd is only member of select read set */
    p->maxfd = listenfd;
    FD_ZERO(&p->read_set);
    FD_SET(listenfd, &p->read_set);
}

– 20 – 15-213, F’02

Event-based Concurrent Server (cont)Event-based Concurrent Server (cont)
void add_client(int connfd, pool *p)  /* add connfd to pool p */
{
    int i;
    p->nready--;

   for (i = 0; i < FD_SETSIZE; i++)  /* Find available slot */
        if (p->clientfd[i] < 0) {
            p->clientfd[i] = connfd;
            Rio_readinitb(&p->clientrio[i], connfd);

            FD_SET(connfd, &p->read_set); /* Add desc to read set */

            if (connfd > p->maxfd) /* Update max descriptor num */
                p->maxfd = connfd;
            if (i > p->maxi) /* Update pool high water mark */
                p->maxi = i;
            break;
        }
    if (i == FD_SETSIZE) /* Couldn't find an empty slot */
        app_error("add_client error: Too many clients");
}



– 21 – 15-213, F’02

Event-based Concurrent Server (cont)Event-based Concurrent Server (cont)
void check_clients(pool *p) { /* echo line from ready descs in pool p */
    int i, connfd, n;
    char buf[MAXLINE];
    rio_t rio;

    for (i = 0; (i <= p->maxi) && (p->nready > 0); i++) {
        connfd = p->clientfd[i];
        rio = p->clientrio[i];

        /* If the descriptor is ready, echo a text line from it */
        if ((connfd > 0) && (FD_ISSET(connfd, &p->ready_set))) {
            p->nready--;
            if ((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0) {
                byte_cnt += n;
                Rio_writen(connfd, buf, n);
            }
            else {/* EOF detected, remove descriptor from pool */
                Close(connfd);
                FD_CLR(connfd, &p->read_set);
                p->clientfd[i] = -1;
            }
        }
    }
}

– 22 – 15-213, F’02

Pro and Cons of Event-Based DesignsPro and Cons of Event-Based Designs

+ One logical control flow.+ One logical control flow.

+ Can single-step with a debugger.+ Can single-step with a debugger.

+ No process or thread control overhead.+ No process or thread control overhead.
n Design of choice for high-performance Web ser vers and

search engines.

- Significantly more complex to code than process- or- Significantly more complex to code than process- or
thread-based designs.thread-based designs.

- Can be vulnerable to denial o f service attack- Can be vulnerable to denial o f service attack
n How?

Threads provide a middle ground between processesThreads provide a middle ground between processes
and I/O multiplexing...and I/O multiplexing...

– 23 – 15-213, F’02

Traditional View of a ProcessTraditional View of a Process

Process = process context + code, data, and stackProcess = process context + code, data, and stack

shared libraries

run-time heap

0

read/write data

Program context:
    Data registers
    Condition co des
    Stack pointer (SP )
    Program co unter (PC)
Kernel context:
    VM structures
    Descriptor table
    brk pointer

Code, data, and stac k

read-only code/data

stack
SP

PC

brk

Process context

– 24 – 15-213, F’02

Alternate View of a ProcessAlternate View of a Process

Process = thread + code, data, and kernel contextProcess = thread + code, data, and kernel context

shared libraries

run-time heap

0

read/write dataThread context:
    Data registers
    Condition co des
    Stack pointer (SP )
    Program co unter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
    VM structures
    Descriptor table
    brk pointer



– 25 – 15-213, F’02

A Process With Multiple ThreadsA Process With Multiple Threads
Multiple threads can be associ ated with a processMultiple threads can be associ ated with a process

n Each thread has its own logical control flow (sequence of PC
values)

n Each thread shares the same code, data, and kernel context

n Each thread has its own thread id (TID)

shared libraries

run-time heap

0

read/write dataThread 1 context:
    Data registers
    Condition co des
    SP1
    PC1

 Shared code and da ta

read-only code/data

stack 1

Thread 1 (main thread )

Kernel context:
   VM structures
   Descriptor table
   brk pointer

Thread 2 context:
    Data registers
    Condition co des
    SP2
    PC2

stack 2

Thread 2 (peer thread)

– 26 – 15-213, F’02

Logical View of ThreadsLogical View of Threads

Threads associated with a proce ss form a pool ofThreads associated with a proce ss form a pool of
peers.peers.
n Unlike processes which form a tree hiera rchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associate d with process foo

T2
T4

T5 T3

shared code, data
and kernel context

– 27 – 15-213, F’02

Concurrent Thread ExecutionConcurrent Thread Execution

Two threads run concurrently (are concurrent) i f theirTwo threads run concurrently (are concurrent) i f their
logical flows overlap in time.logical flows overlap in time.

Otherwise, they are sequential .Otherwise, they are sequential .

Examples:Examples:
n Concurrent: A & B, A&C

n Sequential: B & C

Time

Thread A Thread B Thread C

– 28 – 15-213, F’02

Threads vs. ProcessesThreads vs. Processes

How threads and processes are si milarHow threads and processes are si milar
n Each has its own logical control flow.

n Each can run concurrently.

n Each is context switched.

How threads and processes are di fferentHow threads and processes are di fferent
n Threads share code and data, proc esses (typically) do not.

n Threads are somewhat less expe nsive than processes.
l Process control (creatin g and reaping) is twice a s expensive as

thread control.
l Linux/Pentium III num bers:

» ~20K cycles to c reate and reap a proce ss.
» ~10K cycles to c reate and reap a thread .



– 29 – 15-213, F’02

Posix Threads (Pthreads) InterfacePosix Threads (Pthreads) Interface
PthreadsPthreads ::  Standard interface for ~60 functions that Standard interface for ~60 functions that

manipulate threads from C programs.manipulate threads from C programs.
n Creating and reaping threads.

l pthread_create
l pthread_join

n Determining your thread ID
l pthread_self

n Terminating threads
l pthread_cancel
l pthread_exit
l exit  [terminates all threa ds] , ret [terminates current thre ad]

n Synchronizing access to shared v ariables
l pthread_mutex_init
l pthread_mutex_[un]lock
l pthread_cond_init
l pthread_cond_[timed]wait

– 30 – 15-213, F’02

The Pthreads "hello, world" ProgramThe Pthreads "hello, world" Program
/* 
 * hello.c - Pthreads "hello, world" program 
 */
#include "csapp.h"

void *thread(void *vargp);

int main() {
  pthread_t tid;

  Pthread_create(&tid, NULL, thread, NULL);
  Pthread_join(tid, NULL);
  exit(0);
}

/* thread routine */
void *thread(void *vargp) {
  printf("Hello, world!\n"); 
  return NULL;
}

Thread attributes 
(usually NULL)

Thread arguments
(void *p) 

return value
(void **p)

– 31 – 15-213, F’02

Execution of Threaded“hello, world”Execution of Threaded“hello, world”

main thread

peer thread

return NULL;main thread waits for 
peer  thread to terminate

exit() 
terminates 

main thread and 
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

(peer thread
terminates)

Pthread_create() returns

– 32 – 15-213, F’02

Thread-Based Concurrent Echo
Server
Thread-Based Concurrent Echo
Server
int main(int argc, char **argv)
{
    int listenfd, *connfdp, port, clientlen;
    struct sockaddr_in clientaddr;
    pthread_t tid;

    if (argc != 2) {
        fprintf(stderr, "usage: %s <port>\n", argv[0]);
        exit(0);
    }
    port = atoi(argv[1]);

    listenfd = open_listenfd(port);
    while (1) {
        clientlen = sizeof(clientaddr);
        connfdp = Malloc(sizeof(int));
        *connfdp = Accept(listenfd, (SA *) &clientaddr, &clientlen);
        Pthread_create(&tid, NULL, thread, connfdp);
    }
}



– 33 – 15-213, F’02

Thread-Based Concurrent Server
(cont)
Thread-Based Concurrent Server
(cont)

* thread routine */
void *thread(void *vargp)
{
    int connfd = *((int *)vargp);

    Pthread_detach(pthread_self());
    Free(vargp);

    echo_r(connfd); /* reentrant version of echo() */
    Close(connfd);
    return NULL;
}

– 34 – 15-213, F’02

Issues With Thread-Based ServersIssues With Thread-Based Servers
Must run “detached” to avoid memory leak.Must run “detached” to avoid memory leak.

n At any point in time, a thread is either joinable  or detached.
n Joinable  thread can be reaped and killed by other thre ads.

l must be reaped (with pthread_join) to free memory
resources.

n Detached thread cannot be reaped or killed by other thre ads.
l resources are automa tically reaped on te rmination.

n Default state is joinable.
l use pthread_detach(pthread_self()) to make detach ed.

Must be careful to avoid unintended sha ring.Must be careful to avoid unintended sha ring.
n For example, what happens if we pass the address of connfd

to the thread routine?
l Pthread_create(&tid, NULL, thread, (void
*)&connfd);

All functions called by a thread must be All functions called by a thread must be thread-safethread-safe
n (next lecture)

– 35 – 15-213, F’02

Pros and Cons of Thread-Based
Designs
Pros and Cons of Thread-Based
Designs

+ Easy to share data structures between threads+ Easy to share data structures between threads
n e.g., logging information, file cache.

+ Threads are more efficient than process es.+ Threads are more efficient than process es.

--- Unintentional sharing can introduce subtle and hard---- Unintentional sharing can introduce subtle and hard-
to-reproduce errors!to-reproduce errors!
n The ease with which data can be shared is both the greatest

strength and the greatest weakness of threads.

n (next lecture)


