
Virtual Memory
Oct. 29, 2002

Virtual Memory
Oct. 29, 2002

TopicsTopics
n Motivations for VM

n Address translation

n Accelerating translation with TLBs

class19.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’02

Motivations for Virtual MemoryMotivations for Virtual Memory
Use Physical DRAM as a Cache for the DiskUse Physical DRAM as a Cache for the Disk

n Address space of a process can exceed physical memory s ize

n Sum of address spaces of multiple process es can exceed
physical memory

Simplify Memory ManagementSimplify Memory Management
n Multiple processes resident in main memory.

l Each process with its o wn address space

n Only “active” code and data is actually in memory
l Allocate more memory to process as need ed.

Provide ProtectionProvide Protection
n One process can’t interfere with another.

l because they ope rate in different address spaces.

n User process cannot acce ss privileged information
l different sections of a ddress spaces ha ve different permission s.

– 3 – 15-213, F’02

Motivation #1: DRAM a “Cache” for
Disk
Motivation #1: DRAM a “Cache” for
Disk
Full address space is q uite large:Full address space is q uite large:

n 32-bit addresses: ~4,000,000,000 (4 billion) bytes

n 64-bit addresses: ~16,000,00 0,000,000,000,000 (16 quintillion)
bytes

Disk storage is ~300X cheaper than DRAM storageDisk storage is ~300X cheaper than DRAM storage
n 80 GB of DRAM: ~ $33,000

n 80 GB of disk: ~ $110

To access large amounts of data i n a cost-effective manner,To access large amounts of data i n a cost-effective manner,
the bulk of the data must be stored on dis kthe bulk of the data must be stored on dis k

1GB: ~$200
80 GB: ~$110

4 MB: ~$500

DiskDRAMSRAM

– 4 – 15-213, F’02

Levels in Memory HierarchyLevels in Memory Hierarchy

CPUCPU

regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
line size:

32 B
1 ns

8 B

Register Cache Memory Disk Memory

32 KB-4MB
2 ns
$125/MB
32 B

1024 MB
30 ns
$0.20/MB
4 KB

100 GB
8 ms
$0.001/MB

larger, slower, cheaper

8 B 32 B 4 KB

cache virtual memory

– 5 – 15-213, F’02

DRAM vs. SRAM as a “Cache”DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAMDRAM vs. disk is more extreme than SRAM vs. DRAM
n Access latencies:

l DRAM ~10X slower than SRAM
l Disk ~ 100,000X slower than DRAM

n Importance of exploiting spatial locality:
l First byte is ~ 100,000X slower than success ive bytes on disk

» vs. ~4X improveme nt for page-mode vs. re gular accesses to
DRAM

n Bottom line:
l Design decisions m ade for DRAM caches driven by enormous cost

of misses

DRAMSRAM Disk

– 6 – 15-213, F’02

Impact of Properties on DesignImpact of Properties on Design
If DRAM was to be organized similar to an SRAM ca che, how wouldIf DRAM was to be organized similar to an SRAM ca che, how would

we set the following design parameters?we set the following design parameters?
n Line size?
lLarge, since disk better at transferring large blocks

n Associativity ?
lHigh, to mimimize miss rate

n Write through or write back?
lWrite back, since can’t afford to perform small writes to disk

What would the impact of these choices be on:What would the impact of these choices be on:
n miss rate
lExtremely low. << 1%

n hit time
lMust match cache/DRAM perform ance

n miss latency
lVery high. ~20m s

n tag storage overhead
lLow, relative to block siz e

– 7 – 15-213, F’02

Locating an Object in a “Cache”Locating an Object in a “Cache”

SRAM CacheSRAM Cache
n Tag stored with cache line

n Maps from cache block to memory blocks
l From cached to uncached form
l Save a few bits by on ly storing tag

n No tag for block not in cache

n Hardware retrieves information
l can quickly matc h against multiple ta gs

X

Object Name

Tag Data

D 243

X 17

J 105

•
•
•

•
•
•

0:

1:

N-1:

= X?

“Cache”

– 8 – 15-213, F’02

Locating an Object in “Cache” (cont.)Locating an Object in “Cache” (cont.)

Data

243

 17

105

•
•
•

0:

1:

N-1:

X

Object Name

Location

•
•
•

D:

J:

X: 1

0

On Disk

“Cache”Page Table

DRAM CacheDRAM Cache
n Each allocated page of virtual memory has e ntry in page table

n Mapping from virtual pages to physical pages
l From uncached form to cached form

n Page table entry even if page not in memory
l Specifies disk ad dress
l Only way to indicate where to find page

n OS retrieves information

– 9 – 15-213, F’02

A System with Physical Memory OnlyA System with Physical Memory Only

Examples:Examples:
n most Cray machines, early PC s, nearly all embedded

systems, etc.

n Addresses generated by the CP U correspond directly to bytes in
physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

– 10 – 15-213, F’02

A System with Virtual MemoryA System with Virtual Memory

Examples:Examples:
n workstations, servers, modern PCs , etc.

n Address Translation: Hardware conv erts virtual addresses to
physical addresses via OS -managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

– 11 – 15-213, F’02

Page Faults (like “Cache Misses”)Page Faults (like “Cache Misses”)
What if an object is on disk ra ther than in memory?What if an object is on disk ra ther than in memory?

n Page table entry indicates virtual addres s not in memory

n OS exception handler invoked to move data from disk into
memory
l current process suspe nds, others can resum e
l OS has full control over pl acement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

– 12 – 15-213, F’02

Servicing a Page FaultServicing a Page Fault

Processor Signals ControllerProcessor Signals Controller
n Read block of length P

starting at disk address X and
store starting at memory
address Y

Read OccursRead Occurs
n Direct Memory Access (DMA)

n Under control of I/O controller

I / O Controller SignalsI / O Controller Signals
CompletionCompletion
n Interrupt processor

n OS resumes suspended
process

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller

I/O
controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

– 13 – 15-213, F’02

Motivation #2: Memory ManagementMotivation #2: Memory Management
Multiple processes can reside in physical memory.Multiple processes can reside in physical memory.

How do we resolve address c onflicts?How do we resolve address c onflicts?
n what if two processes access something at the same

address?

kernel virtu al memory

Memory mapp ed region
forshared libraries

runtime hea p (via malloc)

program text (.text)
initialized data (.dat a)

uninitiali zed data (. bss)

stack

forbidden
0

%esp

memory invis ible to
 user code

the “ brk ” ptr

Linux/x86
process
memory
image

– 14 – 15-213, F’02

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2

Address Tra nslation0

0

N-1

0

N-1
M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/ only
library code)

Solution: Separate Virt . Addr . SpacesSolution: Separate Virt . Addr . Spaces
n Virtual and physical address spa ces divided into equal-sized

blocks
l blocks are calle d “pages” (both v irtual and physical)

n Each process has its own virtual addre ss space
l operating system c ontrols how virtual pages a s assigned to

physical memory

...

...

Virtual
Address
Space for
Process 2:

– 15 – 15-213, F’02

Contrast: Macintosh Memory ModelContrast: Macintosh Memory Model
MAC OS 1–9MAC OS 1–9
n Does not use traditional virtual memory

All program objects accessed through “handles”All program objects accessed through “handles”
n Indirect reference through pointer table
n Objects stored in shared global address spa ce

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

“Handles”

– 16 – 15-213, F’02

Macintosh Memory ManagementMacintosh Memory Management

Allocation / Allocation / DeallocationDeallocation
n Similar to free-list management of malloc /free

CompactionCompaction
n Can move any object and just update the (unique) pointer in

pointer table

“Handles”

P1 Pointer Table

P2 Pointer Table

Process P1

Process P2

Shared Address Space

A

B

C

D

E

– 17 – 15-213, F’02

Mac vs. VM-Based Memory MgmtMac vs. VM-Based Memory Mgmt
Allocating, Allocating, deallocatingdeallocating , and moving memory:, and moving memory:

n can be accomplished by both techniques

Block sizes:Block sizes:
n Mac: variable-sized

l may be very sma ll or very large

n VM: fixed-size
l size is equal to one page (4KB on x86 Linux sys tems)

Allocating contiguous chunks of memory:Allocating contiguous chunks of memory:
n Mac: contiguous allocation is required

n VM: can map contiguous range of virtual address es to
disjoint ranges of physical addresses

ProtectionProtection
n Mac: “wild write” by one process can corrupt another’s data

– 18 – 15-213, F’02

MAC OS XMAC OS X

“Modern” Operating System“Modern” Operating System
n Virtual memory with protection

n Preemptive multitasking
l Other versions of MAC OS require proces ses to voluntarily

relinquish control

Based on MACH OSBased on MACH OS
n Developed at CMU in late 1980’s

– 19 – 15-213, F’02

Motivation #3: ProtectionMotivation #3: Protection
Page table entry contains acce ss rights informationPage table entry contains acce ss rights information

n hardware enforces this protection (trap into OS if violation
occurs) Page Tables

Process i:

Physical AddrRead? Write?

 PP 9Yes No

 PP 4Yes Yes

XXXXXXX No No

VP 0:

VP 1:

VP 2:
•
•
•

•
•
•

•
•
•

Process j:

0:
1:

N-1:

Memory

Physical AddrRead? Write?

 PP 6Yes Yes

 PP 9Yes No

XXXXXXX No No
•
•
•

•
•
•

•
•
•

VP 0:

VP 1:

VP 2:

– 20 – 15-213, F’02

VM Address TranslationVM Address Translation

Virtual Address SpaceVirtual Address Space
n V = {0, 1, …, N–1}

Physical Address SpacePhysical Address Space
n P = {0, 1, …, M–1}

n M < N

Address TranslationAddress Translation
n MAP: V → P U {∅}

n For virtual address a:
l MAP(a) = a’ if data at virtual address a at physical address a’

in P
l MAP(a) = ∅ if data at virtual address a not in phys ical memory

» Either invalid or stored o n disk

– 21 – 15-213, F’02

VM Address Translation: HitVM Address Translation: Hit

Processor

Hardware
Addr Trans
Mechanism

Main
Memorya

a'

physical addressvirtual address part of the
on-chip
memory mgmt unit (MMU)

– 22 – 15-213, F’02

VM Address Translation: MissVM Address Translation: Miss

Processor

Hardware
Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
memorya

a'

∅

page fault

physical address
OS performs
this transfer
(only if miss)

virtual address part of the
on-chip
memory mgmt unit (MMU)

– 23 – 15-213, F’02

virtual page number page offset virtual address

physical page number page offset physical address
0p–1

address translation

pm–1

n–1 0p–1p

Page offset bits don’t change as a result of translation

VM Address TranslationVM Address Translation
ParametersParameters

n P = 2p = page size (bytes).

n N = 2n = Virtual address limit

n M = 2m = Physical address limit

– 24 – 15-213, F’02

Page TablesPage Tables
Memory resident

page table
(physical page

 or disk ad dress) Physical Memory

Disk Storage
(swap file or
regular file system file)

Valid

1

1

1
1
1

1

1
0

0

0

Virtual Page
Number

– 25 – 15-213, F’02

Address Translation via Page TableAddress Translation via Page Table

virtual page number (VPN) page offset

virtual address

physical page nu mber (PPN) page offset

physical address

0p–1pm–1

n–1 0p–1p
page table base register

if valid=0
then page
not in memory

valid physical page nu mber (PPN)access

VPN acts
as
table index

– 26 – 15-213, F’02

Page Table OperationPage Table Operation
TranslationTranslation

n Separate (set of) page table(s) per process

n VPN forms index into page table (points to a page table entry)

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

– 27 – 15-213, F’02

Page Table OperationPage Table Operation
Computing Physical AddressComputing Physical Address

n Page Table Entry (PTE) provide s information about page
l if (valid bit = 1) the n the page is in me mory.

» Use physical page number (PPN) to construct add ress
l if (valid bit = 0) the n the page is on dis k

» Page fault

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

– 28 – 15-213, F’02

Page Table OperationPage Table Operation
Checking ProtectionChecking Protection

n Access rights field indicate allowable acces s
l e.g., read-only, read -write, execute-only
l typically support mu ltiple protection modes (e.g., kernel vs. us er)

n Protection violation fault if user doesn’t have necessar y
permission

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

vir tual page num ber (VPN) page off set

vir tua l addr ess

phys ica l page num ber (PPN) page of fset

phy sica l addr ess

0p–1pm–1

n–1 0p–1p
page tabl e base regist er

if val id=0
then page
not in memor y

val id physi cal page numbe r (PPN)access

VPN acts
as
table index

– 29 – 15-213, F’02

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Integrating VM and CacheIntegrating VM and Cache

Most Caches “Physically Addressed”Most Caches “Physically Addressed”
n Accessed by physical add resses

n Allows multiple processes to have blocks in cac he at same time

n Allows multiple processes to share pages

n Cache doesn’t need to be concerned with protection issues
l Access rights chec ked as part of address translation

Perform Address Translation Before Cache LookupPerform Address Translation Before Cache Lookup
n But this could involve a memory access itself (of the PTE)

n Of course, page table entries can also become c ached

– 30 – 15-213, F’02

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

Speeding up Translation with a TLBSpeeding up Translation with a TLB

“Translation “Translation LookasideLookaside Buffer” (TLB) Buffer” (TLB)
n Small hardware cache in MMU

n Maps virtual page numbers to physical page n umbers

n Contains complete page table entries for small number of
pages

– 31 – 15-213, F’02

Address Translation with a TLBAddress Translation with a TLB
virtual add ressvirtual pag e number page off set

physical a ddress

n–1 0p–1p

valid physical p age numbe rtag

valid tag data

data
=

cache hit

tag byte offs etindex

=

TLB hit

TLB

Cache

. ..

– 32 – 15-213, F’02

Simple Memory System ExampleSimple Memory System Example

AddressingAddressing
n 14-bit virtual addresses

n 12-bit physical address

n Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

– 33 – 15-213, F’02

Simple Memory System Page TableSimple Memory System Page Table

n Only show first 16 entries

110D0D0F0F00––0707
1111110E0E00––0606
112D2D0D0D1116160505
00––0C0C00––0404
00––0B0B1102020303
1109090A0A1133330202
111717090900––0101
11131308081128280000

ValidValidPPNPPNVPNVPNValidValidPPNPPNVPNVPN

– 34 – 15-213, F’02

Simple Memory System TLBSimple Memory System TLB
TLBTLB

n 16 entries

n 4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

00––02021134340A0A110D0D030300––070733

00––030300––060600––080800––020222

00––0A0A00––040400––0202112D2D030311

110202070700––0000110D0D090900––030300

ValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagValidValidPPNPPNTagTagSetSet

– 35 – 15-213, F’02

Simple Memory System CacheSimple Memory System Cache
CacheCache

n 16 lines

n 4-byte line size

n Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––––––001414FF0303DFDFC2C2111111161677

D3D31B1B77778383111313EE––––––––00313166

1515343496960404111616DD1D1DF0F072723636110D0D55

––––––––001212CC09098F8F6D6D434311323244

––––––––000B0BBB––––––––00363633

3B3BDADA15159393112D2DAA0808040402020000111B1B22

––––––––002D2D99––––––––00151511

8989515100003A3A11242488111123231111999911191900

B3B3B2B2B1B1B0B0ValidValidTagTagIdxIdxB3B3B2B2B1B1B0B0ValidValidTagTagIdxIdx

– 36 – 15-213, F’02

Address Translation Example #1Address Translation Example #1

Virtual Address Virtual Address 0x03D40x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 37 – 15-213, F’02

Address Translation Example #2Address Translation Example #2

Virtual Address Virtual Address 0x0B8F0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 38 – 15-213, F’02

Address Translation Example #3Address Translation Example #3

Virtual Address Virtual Address 0x00400x0040

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical AddressPhysical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

– 39 – 15-213, F’02

Multi-Level Page TablesMulti-Level Page Tables

Given:Given:
n 4KB (2 12) page size

n 32-bit address space

n 4-byte PTE

Problem:Problem:
n Would need a 4 MB page table!

l 220 *4 bytes

Common solutionCommon solution
n multi-level page tables

n e.g., 2-level table (P6)
l Level 1 table: 10 24 entries, each o f

which points to a Leve l 2 page table.
l Level 2 table: 1 024 entries, each of

which points to a page

Level 1
Table

...

Level 2
Tables

– 40 – 15-213, F’02

Main ThemesMain Themes
Programmer’s ViewProgrammer’s View

n Large “flat” address space
l Can allocate large b locks of contiguous a ddresses

n Processor “owns” machine
l Has private address space
l Unaffected by behav ior of other processes

System ViewSystem View
n User virtual address spac e created by mapping to set of

pages
l Need not be contiguous
l Allocated dynamica lly
l Enforce protection during a ddress translation

n OS manages many processes simultaneously
l Continually switching am ong processes
l Especially when one must wait for resource

» E.g., disk I/O to handle page fault

